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0 Introduction

The goal of this thesis is to classify the irreducible representations of GL2 (Fq) (where
q = pk is a prime power) over an algebraically closed field K of characteristic 0. More
precisely we will compute the character table of GL2 (Fq).
To achieve this goal we will develop the basic theory of group representations and of char-
acter theory in section 1 and 2. Our main references for these two sections are [Ser77] and
[Ste11]. However, both of them will develop the theory only for K = C, so we have to
change some basic definitions and theorems, where complex conjugation is involved.
We will go by [JL01] for the classification of irreducible representations of GL2 (Fq) in
section 3.
At the end of the thesis, in section 4, we will take a look at the modular representations
of GL2 (Fq) in the smallest example (i.e. q = 2) to see the difference to the classical repre-
sentation theory (i.e. K algebraically closed and char(K) = 0). Good references for that
would be [Ser77] and [Alp93]. We will see that our developed theory can not be applied to
this case. New techniques will be necessary since the modular world behaves very different.

We will require a very good knowledge in linear algebra, group theory and in Galois
theory. Everything what we need is contained in [Bos13].
Every vector v ∈ Kn should be considered as a column vector.
Let Mm,n(K) denote the set of m× n matrices with entries in K.
Let us introduce some notations:
If we consider a linear map f between two finite dimensional vector spaces f : V → W
with ordered basis B = (b1, ..., bn) of V respectively C = (c1, ..., cm) of W , we denote the
basis transformation matrix from B to C regarded f as cB,C(f).
We also remember the well-known formula cC,D(g) · cB,C(f) = cB,D(g ◦ f) and the linear
isomorphism cB,C(−) : HomK(V,W ) ∼−→ Mm,n(K), f 7→ cB,C(f). This also induces a
group isomorphism cB,B(−) : GL(V ) ∼−→ GLn(K), f 7→ cB,B(f).

Deutsche Zusammenfassung
In dieser Arbeit geht es um die Klassifizierung von irreduziblen Darstellungen der Gruppe
GL2 (Fq), wobei der Grundkörper K nach Annahme algebraisch abgeschlossen ist und von
Charakteristik 0. Im ersten Teil der Arbeit entwickeln wir die allgemeine Darstellungs-
theorie von endlichen Gruppen und die Charaktertheorie. Dieses Wissen wenden wir auf
unser Klassifikationsproblem an.
Im letzten Teil der Arbeit geht es um den modularen Fall der Darstellungen von GL2 (Fq)
(d.h. die Charakteristik des Grundkörpers teilt die Gruppenordnung). Aus Gründen, die
im Kapitel 4 klar werden, beschränken wir uns nur auf den Fall q = 2. Hauptsächlich
wird hier aufgezeigt, dass unsere bisherige Theorie nicht direkt anwendbar ist und nicht
so einfach abstrahiert werden kann, sodass neue Methoden von Notwendigkeit sind, um
modulare Darstellungen zu studieren, was man anhand von Beispielen sehen wird, da sich
die modulare Welt anders verhält.
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1 Representation theory of finite groups

To get information about a certain group, we will enter the tremendous area of repre-
sentation theory. The main idea is to get a connection to the very well-known theory of
vector spaces and our algebraic structure (in this case the groups). The same idea leads to
different representation theories: one of K-algebras, one of Lie algebras, and some other.
However, representation theory is much more than just a means to study the structure
of groups. It is also a fundamental tool with applications to many areas of mathematics
and statistics, both pure and applied. It also offers a generalization of Fourier analysis via
harmonic analysis (with applications in physics and number theory).
Throughout this thesis K should be a fixed field, where we will assume additional prop-
erties over time. Let us give the definition of the basic building block.

Definition 1.1. A linear representation of a group G is a K-vector space V together with
a group homomorphism ρ : G→ GL(V ).1

Of course GL(V ) denotes the group of isomorphisms of V onto itself. The composition
of the group G is denoted as (s, t) 7→ st. We will also write frequently ρs instead of
ρ(s). When ρ is given, we say that V is a representation space of G or even simply a
representation of G. Note that ρ(g−1) = ρ(g)−1. We will use this trivial observation
often.

The main goal of representation theory is of course to determine all representations of
a given group. But two at first glance different representations could be in some sense the
same (by renaming the elements of the vector space). The following definition captures
this behaviour.

Definition 1.2. Given two linear representations ρ : G → GL(V ) and ρ′ : G → GL(V ′)
of the same group G over the same field K, we define the G-linear (or equivariant)2

morphisms f : (ρ, V ) → (ρ′, V ′) between linear representations as K-linear maps f : V →
V ′, s.t. we have the following commutativity relation

f ◦ ρs = ρ′s ◦ f ∀s ∈ G.

Another conventional way is to call f a G-map. If f is additionally a K-linear isomor-
phism (respectively bijective), we say the two linear representations are similar (or isomor-
phic). We can easily see that the above objects (ρ, V ) and the G-linear morphisms form
a category called RepK(G) (the composition of G-maps is the basic composition of linear
maps). We will write for the hom-sets between two representations HomG((ρ, V ), (ρ′, V ′)),
which is a subspace of HomK(V, V ′).
We will denote the full subcategory of representations with finite dimensional vector spaces
V by RepK(G)fin.

1This definition is the only obvious one: we want that G acts on a vector space V and respects
the K-linear structure, this leads to a group homomorphism G → S(V ) ∩ End(V ) = GL(V ), where
S(V ) := {f : V 7→ V | f is bijective}.

2such a morphism is also called intertwiner.

1
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Note that both categories have (ρ = 0, V = 0) as a zero object, where ρ sends every-
thing to the identity map of the zero vector space. Moreover the coproduct or direct
sum of two objects (ρ, V ) and (ρ′, V ′) exists in both categories and is defined to be
(ρ ⊕ ρ′, V ⊕ V ′), equipped with the natural embeddings inherited by the coproduct of
V ⊕ V ′ in the category of vector spaces.3 The linear representation is defined to be
(ρ⊕ ρ′)g(v, v

′) := (ρg(v), ρ
′
g(v

′)). It is an easy exercise to show that this is indeed a linear
representation and a coproduct in the above categories.
This construction will play a crucial role in our theory. The main idea is to split repre-
sentations into smaller one (so called irreducible representations) and study this simpler
objects. An analog to group theory would be the study of simple groups (reasons are given
by the Jordan–Hölder theorem).

Since everything in linear algebra has a corresponding matrix version (useful for com-
putations), we will give two other definitions regarding matrices.

Definition 1.3. A matrix representation of a group G is a group homomorphism ρ : G→
GLn(K) for some n ∈ Z≥0.

Here GLn(K) denotes as usual the invertible n×n matrices with entries inK. So in the
above setting, we are just associating every group element s ∈ G to a matrix Rs ∈ GLn(K)
satisfying RsRt = Rst for all s, t ∈ G. Note that R1 = 1 ∈ GLn(K) is the identity matrix
and det(Rs) ̸= 0 for all s ∈ G.

Definition 1.4. Given two matrix representations ρ : G → GLn(K) and ρ′ : G →
GLn′(K) of the same group G, we define the G-linear morphisms T : (ρ, n) → (ρ′, n′)
between matrix representations as n′ × n matrices T ∈Mn′,n(K) satisfying the commuta-
tivity relation

T ·Rs = R′
s · T ∀s ∈ G.

If T is invertible, we say the two matrix representations are similar (or isomorphic).

We will call this category MatK(G). The hom-sets HomG((ρ, n), (ρ
′, n′)) are again

subspaces of Mn′,n(K) and the zero object is (ρ = 0, n = 0). The coproduct or direct sum
of two matrix representations (ρ, n) and (ρ′, n′) is given by (ρ ⊕ ρ′, n + n′) (we will omit

the embeddings), with (ρ⊕ ρ′)g :=

(
ρg 0
0 ρ′g

)
.

The linear representations are in some sense more general since we will see that we can
identify the finite dimensional linear representations with matrix representations. Playing
around with these categories will show that there is some kind of same behaviour between
these mathematical objects. In fact there is a deeper connection using the language of
category theory:
Later on we will restrict ourselves to the case of linear representations, where V is finite
dimensional. Assume for this part that V has dimension n ∈ N0 (G and the ground field
K are arbitrary). We will say that n is the degree of the representation or dimension of

3In fact this is even a biproduct equipped with the natural projections.
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the representation under consideration.
We want to show that RepK(G)fin is equivalent to MatK(G). Fix for every finite dimen-
sional vector space V a basis BV . Consider the following functor:

F : RepK(G)fin −→ MatK(G)

(ρ, V ) 7−→ (cBV ,BV
(−) ◦ ρ, dim(V ))

f : (ρ, V ) → (ρ′, V ′) 7−→ cBV ,BV ′ (f)

where cB,B(−) : GL(V ) ∼−→ GLn(K), f 7→ cB,B(f) was the group isomorphism send-
ing a linear map to the corresponding transformation matrix regarding the basis B (here
n = dim(V )). Now it is easy to compute that F is a functor which yields an equivalence
of categories. Moreover the functor F is K-linear, i.e. on the hom-sets F is a K-linear
map.
This equivalence will justify the frequently switch between linear representations and ma-
trix representations.
There are several other equivalent definitions of representations of groups (via K[G]-
modules or functor categories from G considered as a category to VectK etc.), but we
will omit them since they are not of relevance in this thesis.

To achieve a good sense of the above definitions, we will take a look at some examples.

Example 1.5. A representation of degree 1 of a finite group G is (up to isomorphism)
a homomorphism ρ : G → GL1(K) ∼= K×. Since G is finite with n := |G|, Lagrange’s
theorem gives us ρ(s)n = ρ(sn) = ρ(1) = 1, so every ρ(s) is an nth root of unity. In
particular, for a given finite group G and a fixed ground field K, there are at most finitely
many non-isomorphic one dimensional representations. We can even go further and try to
understand these objects:
Because of im(ρ) is a finite subgroup of K×, we know from a well-known fact, that im(ρ) is
cyclic, say im(ρ) = ⟨z⟩ for some z with zn = 1. Moreover we have ord(z) = |⟨z⟩| = |im(ρ)|,
which divides |G|. So our options of defining ρ are again more limited.
Call this the trivial representation if ρ(s) = 1 ∈ K× for all s ∈ G.

We can see that the tools of abstract algebra are very useful in handling with repre-
sentations.

The above example is akin to the following object.

Definition 1.6. Let G be a group and K a field. Define the dual group Ĝ := Hom(G,K×)
to be the set of group homomorphism from G to K×. For two group homomorphisms
χ1, χ2 ∈ Ĝ define the multiplication pointwise by (χ1 · χ2)(t) = χ1(t) · χ2(t). This yields
to an abelian group structure of Ĝ.

There is a canonical group homomorphism φ : G→ ̂̂
G defined by φ(g)(χ) = χ(g).

Theorem 1.7. Assume G is finite and char(K) ∤ |G|. Then φ induces an isomorphism

Gab → ̂̂
G.

3
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Proof. We will just sketch the proof, since this result is not important for this thesis.

There is a natural isomorphism Ĝ ∼= Ĝab. It is easy to show that the above theorem is
true if we show it only for abelian groups G. So without loss of generality assume G is
abelian.
The next step is to show G ∼= Ĝ (which will not be canonical). To find such an isomor-

phism, use the fact that Ĝ×H ∼= Ĝ×Ĥ and that a finite abelian group can be decomposed
into Cartesian products of cyclic groups (structure theorem for finite abelian groups). At
one step you will use the isomorphism {x ∈ K× | xn = 1} ∼= Z/nZ, which is only true
because char(K) ∤ |G| and K is algebraically closed (and n is a divisor of |G|).
So we showed G ∼= Ĝ ∼= ̂̂

G. Hence G and
̂̂
G have the same cardinality, thus we only have

to show injectivity of φ, i.e. g ̸= 1 implies φ(g) ̸= 1. For this just use again the structure
theorem to construct a group homomorphism χ, s.t. χ(g) ̸= 1.

Let us continue with other examples.

Example 1.8. Define ζn := e2πi/n ∈ C× to be a primitive nth root of unity. Now
consider the representation ρ : Z → C× defined by ρ(m) = ζmn . Since the kernel satisfies
ker(ρ) = nZ, we get a new representation ρ′ : Z/nZ → C× with ρ′(m) = ζmn by the
homomorphism theorem.

Example 1.9. Suppose G acts on a set X by φ : G → S(X). Consider the vector space
V over K with basis {ex | x ∈ X}. Then φ induces a representation ρ : G → GL(V ) by
letting ρg acting on the basis with ρg(ex) = eφ(g)(x).
A special case is by setting X = G and the action of G on itself is just the composition
defined on G. This is called the regular representation of G.

Like every algebraic structure, we have again some substructures.

Definition 1.10. Let ρ : G → GL(V ) be a representation. If W is a subspace of V and
is stable under the action of ρ, i.e. w ∈ W implies ρs(w) ∈ W for all s ∈ G, then the
restriction ρ|W of ρ to the image GL(W ) is well-defined and leads to a new representation;
W is said to be a subrepresentation of (ρ, V ).

Definition 1.11. We call a representation (ρ, V ) of G irreducible if it is non-zero (i.e.
V ̸= 0) and the only subrepresentations are 0 and V .

Example 1.12. Consider two representations ρ : G → GL(V ) and ρ′ : G → GL(V ′) and
a G-map f ∈ HomG((ρ, V ), (ρ′, V ′)) between them. Then ker(f) is a subrepresentation of
(ρ, V ) and im(f) is a subrepresentation of (ρ′, V ′).

Example 1.13. Let G be finite here. Take for V the regular representation of G and
let W be the subspace generated by x :=

∑
s∈G es. We have pg(x) = x for all g ∈ G.

Consequently W is a subrepresentation of V , isomorphic to the trivial representation.

We will also give an example of two representations that seems distinct, but are in
truth the same (i.e. isomorphic as representations).

4



kaniuar bacho

Example 1.14. Define φ : Z/nZ → GL2(C) by

φm =

(
cos
(
2πm
n

)
− sin

(
2πm
n

)
sin
(
2πm
n

)
cos
(
2πm
n

) )
to be the matrix for rotation by 2πm

n , and ψ : Z/nZ → GL2(C) by

ψm =

(
e

2πmi
n 0

0 e−
2πmi

n

)
.

We will show that both are isomorphic. Let A =

(
i −i
1 1

)
and so A−1 =

1

2i

(
1 i
−1 i

)
.

A short computation shows A−1φmA = ψm. Hence they are isomorphic as representations.

As we already mentioned, we want to decompose representations into other represen-
tations.

Definition 1.15. A non-zero representation (ρ, V ) is decomposable if it is isomorphic to
the direct sum (coproduct) of two non-zero representations, i.e. (ρ, V ) ∼= (ρ1, V1)⊕(ρ2, V2).

In the literature one may see another definition via subrepresentations, but these are
in fact equivalent. It will follow from the following

Theorem 1.16. Let (ρ, V ) be a representation.
(i) If there exist subrepresentations Ui of (ρ, V ) with 1 ≤ i ≤ n and V =

⊕n
i=1 Ui (inter-

nal direct sum of vector spaces), then there exist representations (ρi, Vi) ∼= (ρ|Ui , Ui) with
(ρ, V ) ∼=

⊕n
i=1 (ρi, Vi).

(ii) Vice versa, if there exist representations (ρi, Vi) with (ρ, V ) ∼=
⊕n

i=1 (ρi, Vi), then there
exist subrepresentations Ui of (ρ, V ) with (ρ|Ui , Ui) ∼= (ρi, Vi) and V =

⊕n
i=1 Ui (internal

direct sum of vector spaces).

Proof. (i) Just set Vi = Ui and ρi = ρ|Ui . The linear map φ :
⊕n

i=1 (ρ|Ui , Ui) → (ρ, V )
defined by φ((u1, ..., un)) = u1 + ...+ un is then an isomorphism of representations.

(ii) Consider the following G-maps (ρi, Vi)
insi−−→

⊕n
i=1 (ρi, Vi)

∼−→ (ρ, V ), where the first
map is the embedding in the coproduct and the second map f is the assumed isomorphism.
Now Ui := f(insi(Vi)) is a subrepresentation of (ρ, V ). It is easy to compute that they
form an internal direct sum of V (use the explicit construction of the coproduct and the
embeddings to see how the elements look like).

Corollary 1.17. Every irreducible representation (ρ, V ) is indecomposable.

Proof. We will show the contraposition. Assume (ρ, V ) is decomposable. With the previ-
ous lemma we get a subrepresentation unequal to 0 and V .

5



kaniuar bacho

In the next section we will see under suitable conditions, that the converse of the
corollary holds.

Now we will introduce some methods to construct new representations out of old ones.
Let ρ : G→ GL(V ) be a representation. Define the dual representation ρ∗ : G→ GL(V ∗)
by ρ∗g(f) := f ◦ ρ−1

g . The well-definedness will follow from the next part.
We will introduce a more general construction regarding two representations (ρ, V ) and
(σ,W ) of G. Define a representation ρ⋆σ : G→ GL(HomK(V,W )) by setting (ρ⋆σ)g(f) :=
σg ◦ f ◦ ρ−1

g . It is easy to verify that this is indeed a representation. If we set (σ,W ) to be
the trivial representation we get the dual representation.

Assume again we have two representation (ρ, V ) and (σ,W ) of G. Then we define
the tensor product of the representations ρ ⊗ σ : G → GL(V ⊗W ) by (ρ ⊗ σ)g(v ⊗ w) =
ρg(v)⊗σg(w). The concrete construction uses the universal property of the tensor product
of vector spaces. To show that this is a group homomorphism, i.e. (ρ⊗ σ)gh = (ρ⊗ σ)g ◦
(ρ⊗ σ)h, just evaluate both sides on the pure tensors, since they form a generating set of
the tensor product. The verification is left to the reader.
Our second construction is in some sense even a special case of the tensor product (in the
finite dimensional case).

Lemma 1.18. Given two finite dimensional representations (ρ, V ) and (σ,W ) of G. Then
(ρ∗ ⊗ σ, V ∗ ⊗W ) is isomorphic to (ρ ⋆ σ,HomK(V,W )).

Proof. Consider the linear map φ : V ∗ ⊗W → HomK(V,W ) by setting φ(f ⊗ w)(v) =
f(v)·w (again the existence follows from the universal property of the tensor product). We
want to show that φ is even an isomorphism of vector spaces by constructing an inverse
map:
Consider a basis {v1, ..., vm} of V and {w1, ..., wn} of W . Define fi,j ∈ HomK(V,W ) by
setting fi,j(vk) = δik · wj for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The set {fi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
forms a basis of HomK(V,W ). Now define the inverse map by sending fi,j to v∗i ⊗ wj ,
where v∗i denotes the dual basis. This shows that φ is an isomorphism of vector spaces.
To show that φ is a G-map, one just has to plug in the definitions, which is left to the
reader.

1.1 Maschke’s theorem and Schur’s lemma

We want now to prove one of the main results of representation theory of finite groups.

Proposition 1.19 (Maschke’s theorem). Let G be a finite group and let char(K) ∤ |G|.
Consider a representation ρ : G → GL(V ). If (ρ, V ) is not irreducible, then it is decom-
posable.

Proof. Since (ρ, V ) is not irreducible, there exists a subrepresentation 0 ⊊ W ⊊ V of
(ρ, V ). Let W ′ be an arbitrary complement of W in V (considered as vector spaces) and
let pr : V ↠W be the projection of V onto W with kernel W ′. We form the average

p̃r :=
1

|G|
∑
g∈G

ρg ◦ pr ◦ ρ−1
g .

6
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Note that we can divide by |G| because char(K) ∤ |G|.
Since pr maps V into W and ρg preserves W we see that p̃r maps V into W ; we have
ρ−1
g (w) ∈ W for w ∈ W , whence (pr ◦ ρ−1

g )(w) = ρ−1
g (w), so (ρg ◦ pr ◦ ρ−1

g )(w) = w and
therefore p̃r(w) = w. Thus p̃r is a projection of V onto W . Hence V is the internal direct

sum of the subspaces W and W̃ := ker(p̃r).

We want to show that W̃ is even stable under ρ, this would prove the proposition.
We have the following chain of equations for all s ∈ G:

ρs ◦ p̃r ◦ ρ−1
s =

1

|G|
∑
g∈G

ρs ◦ ρg ◦ pr ◦ ρ−1
g ◦ ρ−1

s =
∑
g∈G

ρsg ◦ pr ◦ ρ(sg)−1 = p̃r.

To show that w̃ ∈ W̃ implies ρg(w̃) ∈ W̃ for all g ∈ G, we show p̃r(ρg(w̃)) = 0. This is
indeed the case; with the above equation we get

p̃r(ρg(w̃)) = (p̃r ◦ ρg)(w̃) = (ρg ◦ p̃r)(w̃) = 0.

This completes the proof.

Corollary 1.20 (Completely reducible). In the above setting every finite dimensional
representation (ρ, V ) is a direct sum of irreducible representations.

Proof. We proceed by induction on dim(V ). If dim(V ) = 0 then we have the direct sum
of the empty family of irreducible representations. Assume then dim(V ) ≥ 1. If (ρ, V )
is irreducible, we are done. If this is not the case, we can decompose (ρ, V ) into two
subrepresentations of smaller dimension by Maschke’s theorem. Now use the induction
hypothesis.

Since some literature refer to this as Maschke’s theorem, we will do it as well.

Remark 1.21. It is natural to ask if this decomposition is unique in some sense. This is
indeed the case ifK is algebraically closed and char(K) = 0 as we will see as an application
of character theory.

Maschke’s theorem will simplify our theory immensely, since every finite dimensional
representation is a finite direct sum of irreducible ones. So it is enough to study irreducible
representations, where the theory of characters gives us powerful tools. But if the vector
space is eventually infinite dimensional new methods are required. By allowing it to be,
for instance, a Hilbert space, methods of analysis can be applied to the theory of groups.
But we will restrict us in the next section to finite dimensional vector spaces to develop
the character theory with tools of linear algebra.
We will give now an example, where Maschke’s theorem can not be applied to (because
the conditions are not satisfied).

Example 1.22. Let K be an infinite field with char(K) = 0 and consider a non-zero sub-
group (G,+) ≤ (K,+). Hence G is infinite itself. Now define the following representation
φ : G→ GL(K2) by setting φ(g) =

(
1 g
0 1

)
. The only non-zero proper subrepresentation is

U = {
(
a
0

)
| a ∈ K} because the elements have to be eigenvectors of the image of φ. Hence

this representation is not irreducible, but it is indecomposable.

7
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We want to give two other examples, where G is finite, but the characteristic of the
ground field divides the group order.

Example 1.23. Let G = (Fp,+) and K a field with char(K) = p. Define the repre-
sentation φ : G → GL(K2) by setting φ(g) =

(
1 g
0 1

)
. Again the only non-zero proper

subrepresentation is U = {
(
a
0

)
| a ∈ K}.

Example 1.24. Set G = (F2,+) and let K be a field with char(K) = 2. Define the
representation φ : G → GL(K2) by setting φ(1) =

(
0 1
1 0

)
. Since this matrix has only

eigenvalues equal to 1, the subspace U = {
(
a
a

)
| a ∈ K} is the only non-zero proper

subrepresentation.

Now we come to another essential theorem of representation theory. Schur’s lemma
will be used throughout this thesis.

Proposition 1.25 (Schur’s lemma). Let the ground field K be algebraically closed. Con-
sider two irreducible representations ρ : G → GL(V ) and ρ′ : G → GL(V ′) and let
f ∈ HomG((ρ, V ), (ρ′, V ′)). Then:
(i) If (ρ, V ) and (ρ′, V ′) are not isomorphic, we have f = 0.
(ii) If (ρ, V ) = (ρ′, V ′), then f is a homothety (i.e. a scalar multiple of the identity).

Proof. (i) We will show the contraposition of the first assertion. Assume f ̸= 0. We know
that the kernel and the image of G-maps are subrepresentations. Since both representa-
tions are irreducible the kernel and the image are either 0 or the whole space. Because of
f ̸= 0, the kernel is 0 and the image is the whole space, therefore f is an isomorphism.
(ii) Now we are in the case of the second assertion. Since K is algebraically closed f has
an eigenvalue λ. Put f ′ := f − λ · idV ∈ HomG((ρ, V ), (ρ, V )). The kernel of f ′ is not
trivial, hence it is the whole space. We get f ′ = 0 and therefore f = λ · idV .

Corollary 1.26. In the above setting we have:
(i) dim(HomG((ρ, V ), (ρ′, V ′))) = 0 if the representations are not isomorphic.
(ii) dim(HomG((ρ, V ), (ρ′, V ′))) = 1 if the representations are isomorphic.

Proof. (i) This follows immediately from Schur’s lemma.
(ii) We have HomG((ρ, V ), (ρ′, V ′)) ∼= HomG((ρ, V ), (ρ, V )) as vector spaces and Schur’s
lemma does the rest.

There is another surprising application of Maschke’s theorem and Schur’s lemma in
the following

Theorem 1.27. Let G be finite and K algebraically closed with char(K) ∤ |G|. Then the
number of non-isomorphic irreducible representations of G is finite.

Proof. Let (ρ, V ) be the regular representation of G described in example 1.9. Maschke’s
theorem gives us a decomposition into finitely many irreducible subrepresentations, say
V =

⊕n
i=1 Ui. Let (ρ′, S) be any irreducible representation of G. Take an s ∈ S \ {0}.

Define a linear map f : V → S by defining f on the basis vectors f(eg) = ρ′g(s). It is easy

8
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to verify that this is even a G-map unequal to zero, since f(e1) = ρ′1(s) = s. Therefore
an index i exists with f |Ui ̸= 0. So we get a non-zero G-map f |Ui : (ρ|Ui , Ui) → (ρ′, S)
between irreducible representations. Schur’s lemma implies that they are isomorphic.
Hence every irreducible representation of G is isomorphic to one of the Uj . Thus the
number is finite.

Remark 1.28. Here is another proof in terms of K[G]-modules:
The map f : K[G] → S is defined to be f(a) = as. Since this map is non-zero and S is
irreducible, the map has to be surjective. Hence S is a quotient module of K[G]. With
the Jordan-Hölder theorem for K-Algebras, every irreducible K[G]-module appears in a
composition series of the K[G]-module K[G]. Since this is finite dimensional, we have a
finite length. Hence only finitely many non-isomorphic irreducible K[G]-modules.

9
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2 Character theory (in char 0)

Assume for this whole section, that our ground fieldK is algebraically closed and char(K) =
0. The reason for this is, that we will use Schur’s lemma frequently and divide with natural
numbers that we don’t know exactly, so we have to restrict us to the case char(K) = 0.
Moreover every representation is now considered to be finite dimensional. This condition
is essential, since we will always consider the trace of a linear map.
The group G is also considered to be finite. This yields to a richer theory, since we will
use always the finiteness of G.

We will now develop the theory of characters and will restrict us to the main results,
that are required to tackle our classification problem of GL2(Fq).

Definition 2.1. The character χ(ρ,V ) : G → K of a representation ρ : G → GL(V ) is
defined by setting χ(ρ,V )(g) := tr(ρg). The character of an irreducible representation is
called an irreducible character. Instead of χ(ρ,V ) we will just write χρ.

The importance of this map comes from the fact that it captures all important infor-
mation of the representation, as we will see in the following theorems.

Remark 2.2. The character of a matrix representation is defined similarly. Using our
functor F we get χ(ρ,V ) = χF ((ρ,V )) (we will write χρ = χF (ρ)). This equality will be
the reason that we can switch between linear representations and matrix representations
during computing the character. We will use this fact frequently.

We want to examine some properties of the character.

Lemma 2.3. Let (ρ, V ) and (ρ′, V ′) be two representations of G. Then:
(i) χρ(1) = dim(V ),
(ii) χρ(tst

−1) = χρ(s) for all s, t ∈ G,
(iii) If (ρ, V ) and (ρ′, V ′) are isomorphic, then χρ = χρ′,
(iv) χρ⊕ρ′ = χρ + χρ′,
(v) χρ⊗ρ′ = χρ · χρ′,
(vi) χρ∗(g) = χρ(g

−1).

Proof. (i) We have χρ(1) = tr(idV ) = dim(V ) · 1K , where 1K is the multiplicative identity
in K. Since char(K) = 0 the right hand side of the equality is precisely dim(V ).
(ii) This follows immediately because the trace is cyclic.
(iii) Since they are isomorphic, the matrix representations F ((ρ, V )) and (F (ρ′, V ′)) are
isomorphic as well. And it is easy to see that isomorphic matrix representations have the
same character, since they are conjugated by an invertible matrix and the rest follows by
part (ii).

(iv) We have the equalities χρ⊕ρ′ = χF (ρ⊕ρ′)
(iii)
= χF (ρ)⊕F (ρ′) = χF (ρ) + χF (ρ′) = χρ + χρ′ ,

where the second equality follows because F (ρ⊕ ρ′) ∼= F (ρ)⊕ F (ρ′), since F is an equiv-
alence of categories.
(v) We consider an ordered basis B = (b1, ..., bn) of V and B′ = (b′1, ..., b

′
m) of V ′, then we

10
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write each linear map ρg and ρ′g for all g ∈ G as a matrix regarding the above basis. If
we now take the lexicographic ordered basis (b1 ⊗ b′1, b1 ⊗ b′2, ..., b1 ⊗ b′m, b2 ⊗ b′1, ..., bn ⊗
b′m−1, bn⊗ b′m) of the vector space V ⊗V ′ and write the map (ρ⊗ρ′)g regarding this basis,
we get the Kronecker product of the first to matrices. Hence the claim.
(vi) The proceed is similar to that of (v). Take a basis B of V and write ρg as a trans-
formation matrix regarding this basis. Consider the dual basis of B and write the matrix
entries of ρ∗g in terms of the first transformation matrix. The claim will follow.

These are some facts that will be used often to reduce computations to a minimum.
One could ask if the converse of statement (iii) in lemma 2.3 is also true. This is in fact
the case. But we have to develop a little bit more theory to prove this.

We will now try to understand the fixed points of a representation. Consider a repre-
sentation (ρ, V ) and define the fixed subspace

V G := {v ∈ V | ρg(v) = v ∀g ∈ G}.

This is a subrepresentation of (ρ, V ). We will now investigate the operator

P :=
1

|G|
∑
g∈G

ρg ∈ EndK(V ).

It is easy to see that P (v) ∈ V G and P 2 = P . Hence P : V → V G is a projection of V
onto V G. We conclude dim(V G) = rank(P ) and V = ker(P ) ⊕ im(P ). Take a basis of
ker(P ) and one of im(P ), the union of them is a basis of V . The trace of P regarding this
basis is exactly dim(im(P )), therefore we get the following

Lemma 2.4. Let (ρ, V ) be a representation, then

dim(V G) =
1

|G|
∑
g∈G

tr(ρg).

2.1 Class functions and Schur orthogonality relations

The idea of this section is to abstract the behaviour of characters to arbitrary maps
f : G→ K that satisfy property (ii) in lemma 2.3.

Definition 2.5. Let G be a group and define the group algebra

K[G] = KG = {f | f : G→ K},

which is a K-vector space with the pointwise addition and obvious scalar multiplication.
Moreover we will consider the following inner product

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g
−1).

11
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Remark 2.6. The inner product is in fact only a symmetric K-bilinear form. In the
literature you will often find the case, where the theory is developed only for K = C and
instead of taking the inverse in the inner product, they take the complex conjugated. But
we want to develop the theory as much as abstract, so taking the inverse will help us here.

Remark 2.7. There are two ways to define the group algebra; the above definition is one
of them. The other definition is to consider a vector space with basis elements g ∈ G, so
the elements of K[G] are linear combinations of g ∈ G as formal sums.
Both K-vector spaces possess a K-algebra structure in a natural way. Moreover on both
exist a K-bilinear form.
Most books use both ways for different applications. Our definition is more natural to
define the K-bilinear form. The second definition is more natural to define a K-algebra
structure and regard a representation as a K[G]-module.
Both definitions leads to the same object (isomorphism between K-algebras respecting
the K-bilinear form), but one definition may be better than the other one if you want to
visualize a certain situation.

Of interest are the following type of maps of K[G].

Definition 2.8. A map f ∈ K[G] is called a class function if f(g) = f(hgh−1) for all
g, h ∈ G. This means f is constant on the conjugacy classes of G. We will denote this set
with Z(K[G]).

Remark 2.9. The K-vector space K[G] is even an associative unital K-algebra, where
the multiplication is the convolution defined by

(f1 · f2)(t) =
∑
g∈G

f1(g)f2(g
−1t)

One can compute that all K-algebra axioms are satisfied.
The center of this K-algebra is precisely the set of class functions Z(K[G]). For proofs of
these statements take a look at [Ste11, p. 52-54]. Using the other definition of a group
algebra is much more comfortable to prove these statements.

Assume now G is divided into its conjugacy classes C1, ..., Cn and let Cl(G) be the set
of conjugacy classes of G. Define the following class functions δCi : G→ K by

δCi(g) =

{
1 g ∈ Ci

0 g ̸∈ Ci

The set {δCi | 1 ≤ i ≤ n} is then obviously a basis of Z(K[G]), so dim(Z(K[G])) = |Cl(G)|.

We will now see the first appearance of characters and the inner product in the following

Proposition 2.10. Let (ρ, V ) and (σ,W ) be two representations of G. Then ⟨χρ, χσ⟩ =
dim(HomG((ρ, V ), (σ,W ))).

12
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Proof. We will use all the facts that we achieved until now, especially lemmas 1.18, 2.3
and 2.4.

⟨χρ, χσ⟩ = ⟨χσ, χρ⟩ =
1

|G|
∑
g∈G

χσ(g)χρ(g
−1)

=
1

|G|
∑
g∈G

χσ(g)χρ∗(g)

=
1

|G|
∑
g∈G

χρ∗⊗σ(g)

=
1

|G|
∑
g∈G

χρ⋆σ(g)

= dim(HomK(V,W )G)

= dim(HomG((ρ, V ), (σ,W ))).

Corollary 2.11 (Schur orthogonality relations). If (ρ, V ) and (σ,W ) are two irreducible
representations, then:
(i) ⟨χρ, χσ⟩ = 0 if they are not isomorphic.
(ii) ⟨χρ, χσ⟩ = 1 if they are isomorphic.

Proof. This follows immediately with the previous proposition and corollary 1.26.

Let us now introduce some notation and state the unique decomposition of a repre-
sentation.
Let m ∈ Z≥0 and (ρ, V ) be a representation, then we set

m(ρ, V ) :=
m⊕
i=1

(ρ, V ).

It is easy to show that we have an isomorphism of vector spaces

HomG((ρ, V ), (ρ1, V1)⊕ (ρ2, V2)) ∼= HomG((ρ, V ), (ρ1, V1))⊕HomG((ρ, V ), (ρ2, V2))

and

HomG((ρ1, V1)⊕ (ρ2, V2), (ρ, V )) ∼= HomG((ρ1, V1), (ρ, V ))⊕HomG((ρ2, V2), (ρ, V ))

We know that there are only finitely many non-isomorphic irreducible representations (the
trivial representation is always irreducible), as we have seen in theorem 1.27.
Take a complete set {(ρi, Vi) | 1 ≤ i ≤ n} of representatives of the isomorphic classes of
irreducible representations of G.
By Maschke’s theorem every representation (ρ, V ) is isomorphic to

⊕n
i=1mi(ρi, Vi), where

13
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mi are non-negative integers. We will show that these mi are uniquely determined. We
have for all 1 ≤ k ≤ n the equalities

dim(HomG((ρk, Vk), (ρ, V ))) = dim(HomG((ρk, Vk),
n⊕

i=1

mi(ρi, Vi))) = mk,

where the last equality follows from our above observation regarding direct sums and corol-
lary 1.26. This means that mi is determined by the left hand side (which is independently
of the decomposition), thus the decomposition is unique up to isomorphism (i.e. replacing
irreducible representations by isomorphic irreducible representations).

Remark 2.12. One could also use character theory to show this:
⟨χρ, χρk⟩ = ⟨

∑n
i=1miχρi , χρk⟩ =

∑n
i=1mi⟨χρi , χρk⟩ = mk in K. Since char(K) = 0 we

have Z ⊂ K, so the natural number mk is determined by the left hand side.

The character of a representation is very useful if we want to show that a representation
is irreducible or not. Take a look at the

Proposition 2.13. A representation (ρ, V ) of G is irreducible if and only if ⟨χρ, χρ⟩ = 1.

Proof. The only if direction follows immediately from corollary 1.26 and proposition 2.10.
For the if direction decompose (ρ, V ) into irreducible representations

⊕n
i=1mi(ρi, Vi), this

leads to

1 = ⟨χρ, χρ⟩ = ⟨
n∑

i=1

miχρi ,
n∑

i=1

miχρi⟩ = m2
1 + ...+m2

n

as a sum of integers in Z. This is only the case if one of the mi is 1 and the rest is 0.
Hence our assertion.

There is another important proposition to determine if two given representations are
isomorphic or not.

Proposition 2.14. Two representations (ρ, V ) and (ρ′, V ′) are isomorphic if and only if
χρ = χρ′.

Proof. We saw already the only if direction in lemma 2.3.
For the if direction decompose both representations into their irreducible representations,
say (ρ, V ) ∼=

⊕n
i=1mi(ρi, Vi) and (ρ′, V ′) ∼=

⊕n
i=1 ki(ρi, Vi). Then for all 1 ≤ j ≤ n we get

mj = ⟨χρ, χρj ⟩ = ⟨χ′
ρ, χρj ⟩ = kj .

So the representations have the same decomposition.

This proposition is the reason to say that the character of a representation encodes
all information about the representation itself. Since for every representation there is a
character and vice versa given a character there exists exactly one representation with
that character (up to isomorphism). So the above proposition reduces the study of repre-
sentations to that of their characters.

14
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We are now ready to force the problem that the number of conjugacy classes equals the
number of irreducible representations (or equivalently the number of irreducible charac-
ters).

Lemma 2.15. Let f ∈ Z(K[G]) be a class function on G and (ρ, V ) a representation of
G. Define ρf :=

∑
g∈G f(g

−1)ρg ∈ HomK(V, V ). Then:
(i) ρf ∈ HomG(V, V )

(ii) If (ρ, V ) is irreducible of degree n, then ρf = |G|
n ⟨f, χρ⟩ · idV

Proof. (i) This is obvious.
(ii) With Schur’s lemma we get ρf = λ · idV . Taking the trace on both sides yields to

λ · n = tr(λ · idV ) = tr(ρf ) =
∑
g∈G

f(g−1) tr(ρg) = |G| · ⟨f, χρ⟩.

This completes the proof.

Lemma 2.16. Let χ1, ...χn be all pairwise distinct irreducible characters of G. Assume
there exists a class function f ∈ Z(K[G]) with ⟨f, χi⟩ = 0 for all i. Then f = 0.

Proof. Let (ρ, V ) be a representation of G. Consider the G-map ρf that we constructed

in the previous lemma. If (ρ, V ) is irreducible, then pf = |G|
n ⟨f, χρ⟩ · idV = 0, since

f is orthogonal to all irreducible characters. We will show that ρf = 0 for arbitrary
representations (ρ, V ):
We can decompose V into an internal direct sum of irreducible subrepresentations Ui with
1 ≤ i ≤ m. Because of ρf |Ui = (ρ|Ui)f = 0 we get the result.
Now take for (ρ, V ) the regular representation of G and evaluate ρf at the basis vector e1:

0 = ρf (e1) =
∑
g∈G

f(g−1)ρg(e1) =
∑
g∈G

f(g−1)eg,

which means f(g−1) = 0 for all g ∈ G, i.e. f = 0.

Now we are ready to achieve our goal.

Proposition 2.17. Let χ1, ...χn be all pairwise distinct irreducible characters of G. Then
they form a basis of the class functions Z(K[G]).

Proof. We already know that the irreducible characters form an orthonormal system, thus
they are linearly independent. We only have to show that they generate the space of class
functions. Let U be the subspace generated by the irreducible characters. Consider the
following linear maps

Z(K[G])
f1−→ HomK(Z(K[G]),K)

f2−→ HomK(U,K)

by setting f1(f) = ⟨−, f⟩ and f2(f) = f |U . It is obvious that f2 is surjective and by
lemma 2.16 f2 ◦ f1 is injective. Hence f1 is injective between two finite dimensional vector
spaces of same dimension, thus f1 is an isomorphism and therefore f2◦f1 is also surjective,
consequently f2 ◦ f1 is an isomorphism. So we get dim(Z(K[G])) = dim(HomK(U,K)) =
dim(U), which implies that U = Z(K[G]).

15



kaniuar bacho

This proposition proves that the number of non-isomorphic irreducible representations
are precisely dim(Z(K[G])) = |Cl(G)|.

Corollary 2.18. Let f be a class function of G. Then f is the character of a represen-
tation (ρ, V ) if and only if f is a linear combination of the irreducible characters with
non-negative integer coefficients.

This corollary will be useful, when we will classify the irreducible characters of GL2(Fq).
As we saw the characters of representations encodes the information of the representation
itself. We only care about irreducible characters, since all other are linear combinations
with non-negative integer coefficients. Moreover every character is constant on a conjugacy
class. And the number of the irreducible characters are precisely the number of conjugacy
classes. So the following definition arises naturally.

Definition 2.19. Let G be a finite group with irreducible characters χ1, ..., χn and con-
jugacy classes C1, ..., Cn. The character table of G is a n×n matrix X with Xij = χi(Cj).
The rows of X are indexed by the characters of G, the columns by the conjugacy classes
of G and the ij−entry is the value of the ith-character on the jth-conjugacy class.

This character table contains all relevant information about the representations of a
certain group.

Example 2.20. Let us compute the character table of the permutation group S3. We
know that S3 has three conjugacy classes with representatives id, (12) and (123), where we
use the cyclic notation of permutations. We have two irreducible representations of degree
one. The first is the trivial representation; the second is the sgn function, that gives the
parity of a permutation back to us.
Consider now the obvious group action of S3 on X = {1, 2, 3}. Then we get a group
representation (ρ, V ) described in example 1.9. Let {v1, v2, v3} be the basis of V . Consider
the subspace U = ⟨v1 − v2, v2 − v3⟩. This is even a subrepresentation (just compute the
action of ρ(12) and that of ρ(123) on it, since these two permutations generate S3). We
want to show that this subrepresentation is irreducible. We will do it by hand and without
characters, since this example serves as another example in section 4.
Assume we have a subrepresentation of degree one, say ⟨av1+(b−a)v2−bv3⟩ with a, b ∈ K
not both equals zero. We will go by case distinction:
Assume b = 0. Then a ̸= 0. But we have by assumption ρ(123)(av1 − av2) = av2 − av3 ∈
⟨av1 − av2⟩, hence a = 0, contradiction.
If b ̸= 0, then ρ(12)(av1+(b−a)v2−bv3) = (b−a)v1+av2−bv3 ∈ ⟨av1+(b−a)v2−bv3⟩, hence
b = 2a and a ̸= 0. But then ρ(123)(av1+av2−2av3) = −2av1+av2+av3 ∈ ⟨av1+av2−2av3⟩,
which implies 3a = 0 and so a = 0, contradiction.
We showed that U is indeed an irreducible representation of degree 2. So we found all
irreducible representations.
The character table looks as follows:
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id (12) (123)

χ1 1 1 1

χ2 1 −1 1

χ3 2 0 −1

Table 1: Character table of S3

2.2 Induced characters and Frobenius Reciprocity

Until now our attention was only restricted to the representations of a certain group G.
It is natural to ask if there are some relations between representations of different groups.
We will only scratch the surface of this theory/question. Here we just prove enough to help
us classify the irreducible characters of GL2(Fq). We will use ad hoc methods to prove
the existence of induced characters, without really revealing the nature of the induced
representation.

The most obvious way to investigate this question is to compare representations of
G and representations of subgroups of G. We saw that K[G] plays an important role in
character theory. We want to compare it with K[H], where H ≤ G is a subgroup. The
following definition will help us.

Definition 2.21. If f : G→ K is a map in K[G] and H ≤ G a subgroup, then define the
restriction ResGH f : H → K by setting ResGH f(h) = f(h).

Theorem 2.22. Let H ≤ G. Then ResGH : Z(K[G]) → Z(K[H]) is a linear map.

Proof. The map is obviously well-defined and linear.

Our goal is now to define a linear map going the other direction, which is at first glance
not so obvious to define.4

If H ≤ G and f : H → K is a map, then define ḟ : G→ K by

ḟ(x) =

{
f(x) x ∈ H

0 x ̸∈ H

We are going to lift class functions now via the induction map IndGH : Z(K[H]) → Z(K[G])
by the formula

IndGH f(g) =
1

|H|
∑
x∈G

ḟ(x−1gx).

The map is obviously well-defined and linear.
In the case χ is a character of H, one calls IndGH χ the induced character of χ on G. Our
goal is to show that this is indeed again a character, but we will not introduce the notion

4It will be the character of the so called induced representation which is just defined by extension of
scalars using the language of K[G]−modules.
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of an induced representation.
We met two operators, where the first restricts to a subgroup and the second lifts to the
original group. The following theorem, known as Frobenius reciprocity, asserts that the
linear maps ResGH and IndGH are adjoint.5

From now on we will index the inner product by the group where it should be taken in,
since we are operating with two different groups.

Proposition 2.23 (Frobenius reciprocity, [Ste11, p. 99]). Suppose H ≤ G and f is a
class function on H and g a class function on G. Then the formula

⟨IndGH f, g⟩G = ⟨f,ResGH g⟩H

holds.

Corollary 2.24. If χ is a character of some representation (ρ, V ) of H, then IndGH χ is
a character of some representation of G.

Proof. Since IndGH χ is a class function, it is a linear combination of the irreducible charac-
ters of G, say χ1, ..., χn, i.e. Ind

G
H χ =

∑n
i=1 ai ·χi with ai ∈ K. Then Frobenius reciprocity

yields to
ak = ⟨IndGH χ, χk⟩G = ⟨χ,ResGH χk⟩H .

Note that if (σ,W ) is a representation of G, then ResGH χσ is the character of σ|H . Hence
the right hand side of the equality is a non-negative integer by proposition 2.10. Now
apply corollary 2.18.

5With the right notation these are two adjoint functors between RepK(G) and RepK(H). Using propo-
sition 2.10 would prove Frobenius reciprocity immediate.
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3 Representations of GL2(Fq) (in char 0)

We arrived now to our main problem of this thesis: the classification of irreducible char-
acters (representations) of GL2(Fq) over an algebraically closed field K with char(K) = 0.
To determine the character table of GL2(Fq), we will explore the group GL2(Fq) in the
next section.

3.1 Structure of the group GL2(Fq)

Let us repeat the following simple fact:

Lemma 3.1. The order of GL2(Fq) is (q2 − 1)(q2 − q).

Proof. To see this use the fact that a square matrix is invertible if and only if the columns
are linear independent. So the first column has to be linear independent to itself, i.e. there
are (q2 − 1) possibilities (only the zero vector is not linear independent to itself). The
second column should not be in the linear span of the first column, so out of q2 possibilities
we have to subtract q possibilities (the q linear combinations of the first column). All in
all we get the desired order of GL2(Fq).

To determine the conjugacy classes of GL2(Fq), we will first take a look at the properties
of finite fields.
Remember that every finite field has an order equals a prime power. Moreover there is
exactly one finite field of order q = pk (up to isomorphism), where p is a prime number
and k a positive integer.
One may construct a finite field of order q = pk by considering the splitting field L of the
polynomial f = Xq −X ∈ Fp[X] (L consists of the q distinct roots of f in the algebraic
closure Fp). For a detailed description take a look at [Bos13, p. 126-129]
In the following we will consider the field extension Fq ⊂ Fq2 .

Lemma 3.2. If r ∈ Fq2 then r + rq, r1+q ∈ Fq.

Proof. WLOG r ∈ Fq2 \ Fq. Then the minimal polynomial of r over Fq is of degree 2,
say µr(X) = X2 + aX + b ∈ Fq[X]. Let k := νp(q) be the p-adic valuation of q. Since
we have a Galois extension of degree 2 with generator F k

p (composition of the Frobenius
homomorphism kth time with itself), the other root of µr(X) is rq. Hence a = −(r + rq)
and b = r1+q.

Since every finite subgroup of the multiplicative group of a field is cyclic, we know that
(F×

q2
, ·) is cyclic; let ε be a generator of order (q2−1). The roots of f = Xq2−1−1 ∈ K[X]

form also a multiplicative finite subgroup of (K×, ·), hence we get a root ω of f with order
(q2 − 1). Thus every element r ∈ F×

q2
may be written as εm for some integer m (note

that m is uniquely determined modulo q2 − 1). Let r̄ := ωm (this is well-defined since ω
has also order q2 − 1). The map ·̄ : F×

q2
→ K× is then an irreducible representation of

degree one (the character coincide with the representation). Moreover every irreducible
representation of F×

q2
is of the form r 7→ r̄j for 1 ≤ j ≤ q2 − 1 (since the group is abelian,
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there are exactly q2 − 1 irreducible characters and our presented characters above are all
different). Denote the above map by σj .

Let us introduce some notation. Let G be a finite group. For two elements x, y ∈ G
we will write x ∼ y if they are conjugated to each other. Let xG := {gxg−1 | g ∈ G} be
the conjugacy class of x in G and let CG(x) := {g ∈ G | gxg−1 = x} be the centralizer of
x. It is a well-known fact that

|xG| = |G|
|CG(x)|

.

Let us go forward to the classification of conjugacy classes. Keep the following in mind:(
a b
0 c

)
and

(
a′ b′

0 c′

)
are conjugated to each other only if {a, c} = {a′, c′}, since their eigenvalues have to coin-
cide.
We will now give four families of conjugacy classes where GL2(Fq) divides into.
The hidden idea of this whole section is to do case distinction by the minimal polynomial
regarding the number of roots. For minimal polynomials of degree 2 without any root, a
quadratic field extension will contain both roots, where one of the root is received by using
qth time the Frobenius homomorphism (generator of the Galois group of this field exten-
sion) on the other root. This leads as a motivation for the fourth family that we will regard.

First family I: This is the set I = {s · I =
(
s 0
0 s

)
| s ∈ F×

q }; equals the center of GL2(Fq).
These elements give us q − 1 conjugacy classes of size 1.

Second family U : This is the set U = {us :=
(
s 1
0 s

)
| s ∈ F×

q }. Every element gives us
distinct conjugacy classes (their eigenvalues are not the same).
We want to compute the size of the conjugacy classes by computing the size of the cen-
tralizer and using the formula above.
Let g =

(
a b
c d

)
∈ GL2(Fq). It is easy to see that g ·us = us · g if and only if g =

(
a b
0 a

)
. This

means |uGs | =
|G|

|CG(us)| =
(q2−1)(q2−q)

(q−1)q = q2 − 1.

So we have q − 1 new conjugacy classes each of size q2 − 1 (they do not coincide with the
first family of conjugacy classes because of obvious reasons).

Third family D: This is the set D = {ds,t :=
(
s 0
0 t

)
| s, t ∈ F×

q and s ̸= t}. Note that(
0 1
1 0

)−1

· ds,t ·
(
0 1
1 0

)
= dt,s

and ds,t ∼ ds′,t′ if and only if ds′,t′ = ds,t or ds′,t′ = dt,s. So we get for every element
a conjugacy class, where we counted each distinct conjugacy class twice because of the
above conjugation of ds,t ∼ dt,s. Hence we have

(q−1)(q−2)
2 new conjugacy classes (different

from the first and second family, since there are two eigenvalues).
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We want to calculate again the size of each centralizer.
It is easy to compute that g ·ds,t = ds,t ·g if and only if g =

(
a 0
0 d

)
. Hence |dGs,t| =

|G|
|CG(ds,t)| =

(q2−1)(q2−q)
(q−1)2

= q(q + 1) is the size of each conjugacy class.

Fourth family V : This is the set V = {vr :=
(

0 1
−r1+q r+rq

)
| r ∈ Fq2 \ Fq}. First note that

this is well-defined because of lemma 3.2.
The characteristic polynomial of vr is pvr(X) = X2 − (r + rq)X + r1+q ∈ Fq[X], where it
splits over the field Fq2 into pvr(X) = (X−r)(X−rq). So our matrix vr has no eigenvalues
in Fq, therefore the conjugacy class is distinct to the previous three families of conjugacy
classes.
Note that vr ∼ vr′ in GL2(Fq) if and only if r′ = r or r′ = rq. More over r ̸= rq since
r ∈ Fq2 \Fq. So we get for every element a conjugacy class, where we counted each distinct

conjugacy class twice (that of vr ∼ vrq). Hence we have q2−q
2 new conjugacy classes.

To compute the size of the centralizer consider the two matrices:

g · vr =
(
−br1+q a+ b(r + rq)
−dr1+q c+ d(r + rq)

)
and

vr · g =

(
c d

−ar1+q + c(r + rq) −br1+q + d(r + rq)

)
A necessary condition would be c = −br1+q and d = a+ b(r + rq). This is also sufficient
under the assumption (a, b) ̸= (0, 0), as we will see:
The equality of the matrix is clear, but we have to show that g is indeed invertible. The
determinant of g would be ad − bc = a2 + ab(r + rq) + b2r1+q = (a + br)(a + brq) in Fq2

(note that g is in Fq invertible if and only if it is in Fq2 , since the determinant in both
fields is the same element in Fq). Since (a, b) ̸= (0, 0) and r, rq ̸∈ Fq, we see that both

factors are unequal to 0. Thus |vGr | =
|G|

|CG(vr)| =
(q2−1)(q2−q)

q2−1
= q2 − q.

All in all we have the following number of distinct elements in the above conjugacy
classes

(q − 1) · 1 + (q − 1) · (q2 − 1) +
(q − 1)(q − 2)

2
· q(q + 1) +

q2 − q

2
· (q2 − q),

which equals exactly the group order of GL2(Fq). So we found all conjugacy classes of
GL2(Fq). Listed in a table they look like this:

Class rep. g sI us ds,t vr
Size of class 1 q2 − 1 q(q + 1) q2 − q

No. of classes q − 1 q − 1 (q−1)(q−2)
2

q2−q
2

Table 2: Conjugacy classes of GL2(Fq)
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3.2 Classification of irreducible representations of GL2(Fq) in char 0

In this section we will construct all irreducible characters of GL2(Fq). In the next section
we will give two examples of the character table for q = 2, 3.

Throughout this section, we will use the following well-known fact:
Let L/K be a field extension. Then two matrices A,B ∈ GLn(K) are similar in GLn(K)
if and only if they are similar in GLn(L). The proof uses the theory of the Frobenius
normal form of matrices.

Theorem 3.3. Label the conjugacy classes of GL2(Fq) as above and let ·̄ : F×
q2

→ K× be

the map we constructed in the last section. Then the irreducible characters of GL2(Fq) are
given by λi, ψi, ψi,j , χi as follows:

sI us ds,t vr
λi s̄2i s̄2i (s̄t)i r̄i(1+q)

ψi qs̄2i 0 (s̄t)i −r̄i(1+q)

ψi,j (q + 1)s̄i+j s̄i+j s̄it̄j + s̄j t̄i 0

χi (q − 1)s̄i −s̄i 0 −(r̄i + r̄iq)

Table 3: Character table of GL2(Fq)

Here we have the following restrictions of the subscripts:
(a) For λi we have 0 ≤ i ≤ q − 2. Thus there are q − 1 characters of degree 1.
(b) For ψi we have 0 ≤ i ≤ q − 2. Thus there are q − 1 characters of degree q.

(c) For ψi,j we have 0 ≤ i < j ≤ q − 2. Thus there are (q−1)(q−2)
2 characters of degree

q + 1.
(d) For χi consider the set J := {1 ≤ j ≤ q2 − 2 | (q+1) ∤ j}. Then for every j ∈ J , there
exists exactly one j′ ∈ J , s.t. j ≡ q ·j′ (mod q2−1). This j′ is unequal to j and the unique

element (j′)′ corresponding to j′ is j itself. So J is divided into |J |
2 = q2−q

2 disjoint sets of
pairs. Take one element of each pair for indexing χi (it is easy to see that the elements of

the same pair yields the same character; use r̄i = ri). Thus there are q2−q
2 characters of

degree q − 1.

We will prove the above classification step by step.
The idea is to construct irreducible characters as much as possible and see at the end that
we already found all (by summing up the number and seeing it coincides with the number
of conjugacy classes).
From now on set G = GL2(Fq).

Lemma 3.4. There are (at least) q-1 irreducible characters of degree 1 of G.

Proof. Define λi := σi ◦ det : G→ K×, where σi was the irreducible representation of F×
q .

For 0 ≤ i ≤ q − 2 these are all different (just evaluate it at
(
ε 0
0 1

)
).

22



kaniuar bacho

The values of these characters are exactly those in theorem 3.3.
We will now construct one of the other characters in theorem 3.3, but will show later that
they are irreducible and different.

Lemma 3.5. For all integers i, j there is a character ψi,j of G with the values described
in theorem 3.3.

Proof. Let B ≤ G be the subgroup of upper triangular matrices.6 We have obviously
|B| = (q − 1)2q. Define λi,j : B → K× by

λi,j :

(
s r
0 t

)
7→ s̄it̄j .

The λi,j is an irreducible character of B. We let ψi,j := IndGB λi,j , which is again a character
by corollary 2.24. We will use the definition of induced characters to calculate the values
of ψi,j on each conjugacy class.
We have

ψi,j(sI) =
1

|B|
∑
x∈G

˙λi,j(x
−1(sI)x) =

1

|B|
∑
x∈G

˙λi,j(sI) =
|G|
|B|

s̄i+j = (q + 1) · s̄i+j .

To compute ψi,j(us) =
1

|B|
∑

x∈G
˙λi,j(x

−1usx) just note that x−1usx ∈ B if and only if

x ∈ B, hence

ψi,j(us) =
1

|B|
∑
x∈B

λi,j(x
−1usx) =

1

|B|
∑
x∈B

λi,j(us) = λi,j(us) = s̄i+j .

For ψi,j(ds,t) =
1

|B|
∑

x∈G
˙λi,j(x

−1ds,tx) notice that x−1ds,tx ∈ B if and only if x =
(
a b
c 0

)
or x =

(
a b
0 d

)
. Denote the set of elements of the first form by D1 and of the second

form by D2. In the first case (i.e. x ∈ D1) we get x−1ds,tx =
(
t ∗
0 s

)
; in the second case

x−1ds,tx =
(
s ∗
0 t

)
. Moreover D1 ∩D2 = ∅. This yields to

ψi,j(ds,t) =
1

|B|
∑
x∈G

˙λi,j(x
−1ds,tx) =

1

|B|
(
∑
x∈D1

λi,j(x
−1ds,tx) +

∑
x∈D2

λi,j(x
−1ds,tx))

=
1

|B|
(
∑
x∈D1

t̄is̄j +
∑
x∈D2

s̄it̄j)

= t̄is̄j + s̄it̄j .

In the last case we have ψi,j(vr) =
1

|B|
∑

x∈G
˙λi,j(x

−1vrx) = 0, which is obvious because

the elements of B do have eigenvalues, but the conjugates of vr do not have eigenvalues
in Fq.

6This group is called the Borel subgroup and appears in the Bruhat decomposition.
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Lemma 3.6. For each integer i there is an irreducible character ψi of G whose values are
given in theorem 3.3. For 0 ≤ i ≤ q − 2 all ψi are different.

Proof. First we need to compute two inner products.
By definition we have

⟨ψi,i, ψi,i⟩G =
1

|G|
∑
x∈G

ψi,i(x)ψi,i(x
−1).

We can split the sum into its conjugacy classes. The first three families of conjugacy
classes are enough, since ψi,i is always zero on the last one as we saw.
For the first family we get the value

ψi,i(sI)ψi,i((sI)
−1) = (q + 1)s̄2i · (q + 1)s̄−2i = (q + 1)2,

for each s ∈ F×
q . So the first summand is (q+ 1)2 multiplied with the number of elements

in the first family, so we get (q + 1)2 · (q − 1).
For the second family we get the value

ψi,i(us)ψi,i(u
−1
s ) = ψi,i(us)ψi,i(us−1) = s̄2i · s̄−2i = 1,

where the first equality holds because u−1
s ∼ us−1 . So the second summand is the above

value multiplied with the number of elements in the second family: (q − 1) · (q2 − 1).
For the third family we get the value

ψi,i(ds,t)ψi,i(d
−1
s,t ) = 2(s̄t)i · 2(s̄t)−i = 4,

The last summand is therefore 4 · (q−1)(q−2)
2 · q(q + 1).

This yields to

⟨ψi,i, ψi,i⟩G =
1

|G|
((q + 1)2 · (q − 1) + (q − 1) · (q2 − 1) + 4 · (q − 1)(q − 2)

2
· q(q + 1)) = 2.

In a similar fashion we will compute the inner product

⟨ψi,i, λi⟩G =
1

|G|
∑
x∈G

ψi,i(x)λi(x
−1).

Again, computing the summand for the first family of conjugacy classes yields to

ψi,i(sI)λi((sI)
−1) = (q + 1)s̄2i · s̄−2i = (q + 1).

We have to multiply this value again with the number of elements in the first family of
conjugacy classes: (q + 1) · (q − 1).
For the second family we get the value

ψi,i(us)λi(u
−1
s ) = s̄2i · s̄−2i = 1.
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So the second summand is the above value multiplied with the number of elements in the
second family: (q − 1) · (q2 − 1).
For the third family we get the value

ψi,i(ds,t)λi(d
−1
s,t ) = 2(s̄t)i · (s̄t)−i = 2,

The last summand is therefore 2 · (q−1)(q−2)
2 · q(q + 1).

This yields to

⟨ψi,i, λi⟩G =
1

|G|
((q + 1) · (q − 1) + (q − 1) · (q2 − 1) + 2 · (q − 1)(q − 2)

2
· q(q + 1)) = 1.

We know that ψi,i is a character of G, so it is a linear combination of irreducible characters
with non-negative integer coefficients. Because of ⟨ψi,i, ψi,i⟩G = 2 our character ψi,i is
the sum of exactly two irreducible characters of G with coefficients equal to 1. Since
⟨ψi,i, λi⟩G = 1 the irreducible character λi is one of the summands. Let ψi be the other
one, i.e. ψi,i = λi + ψi. The values of ψi are already determined by ψi = ψi,i − λi.
The new irreducible characters ψi are all different for 0 ≤ i ≤ q− 2 (just evaluate them at
dε,1).

We are now ready to show that the characters ψi,j are irreducible and pairwise different
for the right subscripts (like in theorem 3.3).

Lemma 3.7. Suppose 0 ≤ i < j ≤ q − 2, then:
(i) The characters ψi,j are irreducible.
(ii) The characters ψi,j are all different.

Proof. (i) We want to show that the inner product in G equals 1. Like in lemma 3.6 we

get three summands ⟨ψi,j , ψi,j⟩G = A+B + C with A = (q+1)2(q−1)
|G| , B = (q−1)(q2−1)

|G| and

C =
q(q + 1)

|G|
· 1
2
·

∑
s,t∈F×

q ,s ̸=t

(s̄it̄j + s̄j t̄i)(s̄−it̄−j + s̄−j t̄−i),

where the factor 1
2 comes from double counting the conjugacy classes (ds,t ∼ dt,s).

To evaluate C note thatD′ := {ds,t | s, t ∈ F×
q } is an abelian subgroup of G of order (q−1)2

(note that s = t is allowed). Then the map δ : D′ → K defined by δ(ds,t) = s̄it̄j + s̄j t̄i is
the sum of two irreducible different characters of degree 1 of D′. Hence

2 = ⟨δ, δ⟩D′ =
1

|D′|
(4(q − 1) +

∑
s,t∈F×

q ,s ̸=t

(s̄it̄j + s̄j t̄i)(s̄−it̄−j + s̄−j t̄−i)).

Thus we get C = q−3
q−1 and A+B + C = 1. Therefore ⟨ψi,j , ψi,j⟩G = 1.

(ii) Let 0 ≤ k, l ≤ q − 2 and 0 ≤ k′, l′ ≤ q − 2. Consider again the irreducible char-
acters λk,l of B defined in lemma 3.5. If (k, l) ̸= (k′, l′) then λk,l ̸= λk′,l′ (evaluate both at
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dε,1 and d1,ε).
Remember that we have 0 ≤ i < j ≤ q− 2. Take another pair 0 ≤ i′ < j′ ≤ q− 2, we want
to show ψi,j ̸= ψi′,j′ if (i, j) ̸= (i′, j′). The above observation shows λi,j+λj,i ̸= λi′,j′+λj′,i′ ,
otherwise we would have λi′,j′ = λi,j or λi′,j′ = λj,i, since the irreducible characters form
a basis of the class functions. The first case is not allowed based on our assumption. The
second case yields to i′ = j and j′ = i, which is not possible because i′ = j > i = j′ > i′.
So there is a matrix

(
s b
0 t

)
∈ B, s.t. either

s ̸= t and s̄it̄j + s̄j t̄i ̸= s̄i
′
t̄j

′
+ s̄j

′
t̄i

′
or s = t and s̄i+j ̸= s̄i

′+j′ .

In both cases we get that ψi,j differs from ψi′,j′ on the third or second family of conjugacy
classes.

We constructed so far the first three families of irreducible characters. We will go on
with the construction of the last one and need the following

Lemma 3.8. Let H = ⟨vε⟩ ≤ G be the subgroup of G generated by vε. Then |H| = q2− 1.
The group H contains the q−1 scalar matrices sI in G, and of the remaining q2−q elements
of H, precisely two belong to each of the conjugacy classes represented by vr ∼ vrq with
r ∈ Fq2 \ Fq

Proof. The order of vε ∈ GL2(Fq) equals the order of vε ∈ GL2(Fq2). The matrix vε has
eigenvalues ε and εq in Fq2 , so the matrix has order q2 − 1.

First note that viε = viqε ⇔ q + 1|i ⇔ εi = εiq. The eigenvalues of viε and of viqε are εi and
εiq.
If i = (q + 1) · k with 1 ≤ k ≤ q − 1, then viε has eigenvalues εi = εiq ∈ Fq, hence is
conjugated to εi · I. Since the conjugacy class has size 1, we have equality.
Assume now 1 ≤ i ≤ q2 − 1 with q+1 ∤ i. Then both viε ̸= viqε with εi ̸∈ Fq are conjugated
to vεi .

Lemma 3.9. For each integer i there exists a character ϕi of G which takes the following
values:

sI us ds,t vr
ϕi q(q − 1)s̄i 0 0 r̄i + r̄iq

Proof. Let H = ⟨vε⟩ ≤ G and consider the linear character αi : H → K×, which sends
the generator vε to ε̄i (remember that ε̄ = ω has order q2 − 1). Suppose that g = vjε ∈ H
is conjugated to vr in G. Then their eigenvalues coincide, i.e. {εj , εjq} = {r, rq}. Then

we have αi(g) = αi(v
j
ε) = ε̄ij = ε̄j

i
, so it is equal to r̄i or to r̄iq and we get in both cases

αi(g) + αi(g
q) = r̄i + r̄iq.

Let

ϕi(g) := IndGH αi(g) =
1

|H|
∑
x∈G

α̇i(x
−1gx).
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To compute this expression we will divide G into its four families of conjugacy classes.
With lemma 3.8 we know that ϕi is zero on the second and third family.
For g = sI with s ∈ F×

q we get

ϕi(sI) =
1

|H|
∑
x∈G

α̇i(x
−1(sI)x) =

1

|H|
∑
x∈G

α̇i(sI) =
|G|
|H|

αi(sI) = q(q − 1)s̄i,

since there exists some integer j with vjε = sI (as we showed in lemma 3.8) and εj = s
(because they have the same eigenvalues).
Let us compute the value on the last family of conjugacy classes:
Let r ∈ Fq2 \Fq, then lemma 3.8 says there exists a g ∈ H, s.t. g ∼ vr. Moreover lemma 3.8
says g ̸= gq ∼ vr. Hence

ϕi(vr) = ϕi(g) =
1

|H|
∑
x∈G

α̇i(x
−1gx),

Now verify easily that x−1gx ∈ H ⇔ x−1gx = g or x−1gx = gq. The first equality has
|CG(g)| = |G|

|gG| =
|G|
|vGr | = q2 − 1 solutions for x. The second equation has the same number

of solutions for x, since g ∼ vr ∼ gq, so there exists an h ∈ G with gq = hgh−1 and the
equation x−1gx = gq is equivalent to (xh)−1g(xh) = g, so we have an obvious bijection
between the solutions of both equations. Thus

ϕi(vr) = ϕi(g) =
1

|H|
∑
x∈G

α̇i(x
−1gx) =

1

|H|
((q2 − 1)αi(g) + (q2 − 1)αi(g

q)) = r̄i + r̄iq,

as we saw in the beginning of the proof.

Lemma 3.10. Assume that i is an integer and (q + 1) ∤ i. Then∑
r∈Fq2\Fq

(r̄i + r̄iq)(r̄−i + r̄−iq) = 2(q − 1)2

Proof. Note that

G1 =

{(
r 0
0 rq

)
| r ∈ F×

q2

}
and G2 =

{(
r 0
0 rq

)
| r ∈ F×

q

}
are two abelian groups of order q2 − 1 respectively q − 1. Consider the following sum of
two irreducible characters of degree one for each group

χ :

(
r 0
0 rq

)
7→ r̄i + r̄iq

This χ is for G1 a sum of two different irreducible characters (since ε̄i ̸= ε̄iq, otherwise
(q + 1) | i), hence

2 = ⟨χ, χ⟩G1 =
1

q2 − 1

∑
r∈F×

q2

(r̄i + r̄iq)(r̄−i + r̄−iq).
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But χ is for the group G2 twice an irreducible character because rq = r. So

4 = ⟨χ, χ⟩G2 =
1

q − 1

∑
r∈F×

q

(r̄i + r̄iq)(r̄−i + r̄−iq).

Putting these formulas together leads to∑
r∈Fq2\Fq

(r̄i + r̄iq)(r̄−i + r̄−iq) = 2(q2 − 1)− 4(q − 1) = 2(q − 1)2.

We are now ready to get the last irreducible characters.

Lemma 3.11. For each integer i, let χi be the class function on G with values like in
theorem 3.3. If (q + 1) ∤ i, then χi is an irreducible character of G.

Proof. Recall the characters ψi,j , ψi and ϕi given in lemmas 3.5, 3.6 and 3.9. Define the
class function χi := ψ0,−i · ψi − ψ0,i − ϕi (where we mean the pointwise multiplication
and not the convolution). Just plugin the conjugacy classes to verify that the values are
exactly those in theorem 3.3.
Next assume (q + 1) ∤ i and use the previous lemma with the facts u−1

s ∼ us−1 and
v−1
r ∼ vr−1 to compute

⟨χi, χi⟩G =
1

|G|
((q − 1)2(q − 1) + (q − 1)(q2 − 1) + (q − 1)2(q2 − q)) = 1.

Remember that the pointwise product of two characters is again a character (the char-
acter of the tensor product), hence χi is a linear combination of characters with integer
coefficients, splitting these into the irreducible characters leads to a linear combination of
irreducible characters with integer coefficients. But we know ⟨χi, χi⟩G = 1, hence χi is
the linear combination of exactly one irreducible character with coefficient either 1 or −1.
But we also know that χi(1) = q − 1 > 0 and that a character evaluated at 1 gives the
dimension of the representation back, hence only 1 as a coefficient is possible. That means
χi is an irreducible character.

Let us now show that the new constructed irreducible characters are different for the
subscripts described in theorem 3.3.

Lemma 3.12. Suppose that i and j are integers from the disjoint sets that we described
in theorem 3.3, i.e. 1 ≤ i ̸= j,≤ q2−2, with (q+1) ∤ i, (q+1) ∤ j and i ̸≡ jq (mod q2−1).
Then the characters χi and χj of G are different.

Proof. Consider again the irreducible linear characters αk of H = ⟨vε⟩ ≤ G described in
lemma 3.9. We have αi ̸= αj and αi ̸= αjq (evaluate both at vε). Hence αi+αiq ̸= αj+αjq

(because they form a basis in the space of class functions on H). So there is a matrix
g ∈ H, s.t. either
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g = sI with s ∈ F×
q and (αi + αiq)(g) = 2s̄i ̸= 2s̄j = (αj + αjq)(g)

or
g ∼ vr with r ∈ Fq2 \ Fq and (αi + αiq)(g) = r̄i + r̄iq ̸= r̄j + r̄jq = (αj + αjq)(g).
In both cases we get that χi differs from χj on the first or last family of conjugacy
classes.

We have now completed the proof of theorem 3.3, since we have shown that the class
functions given in the theorem are different irreducible characters; and the number of them
equals the number of the conjugacy classes of GL2(Fq).

Although the character table of GL2(Fq) was first given 1907, it was not until the
1950’s that the character table of GL3(Fq) was found. Then, in 1955, James Alexander
Green determined the character table of GLn(Fq) over the complex numbers for all positive
integers n in his paper [Gre55].

3.3 Example of character table for q = 2, 3

Since the description of the character table was in some sense abstract, let us take a look
at the concrete cases q = 2 and q = 3.

In the first case let F4 be realized through F2[X]/(X2 +X + 1), since the polynomial
X2 + X + 1 is irreducible in F2[X]. Instead of writing X for the residue class of X in
F4, we will just write X to get not confused with the map ·̄ : F×

q2
→ K× defined in the

beginning of section 3.
It is easy to see F×

4 = ⟨X⟩. Let ε = X be the generator of F×
4 and ω be a primitive third

root in K× (i.e. ord(ω) = 3).
Regarding the classification in theorem 3.3, we get a 3× 3 matrix:

I u1 vX
λ0 1 1 1

ψ0 2 0 −1

χ1 1 −1 1

Table 4: Character table of GL2(F2)

The computation is straightforward. Just use the facts 1̄ = 1 and ω2 + ω + 1 = 0.
This character table might be familiar. Indeed, we have the same character table for S3
showed in table 1. The reason is that GL2(F2) and S3 are isomorphic as groups, since
GL2(F2) operates faithful on the set V = {

(
1
0

)
,
(
0
1

)
,
(
1
1

)
}, i.e. there is an injective group

homomorphism GL2(F2) → S(V ). The groups are of the same cardinality, so they are
isomorphic.
Note that the inverse of the above observation with the character table does not hold, that
means there are non-isomorphic groups with the same character table. An example is the
dihedral group of order 2n = 8 and the quaternion group given in [Ste11, p.101-103].
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Let us go on with the case q = 3. this table is much bigger; it is of size 8× 8.
First consider the finite field F9 = F3[X]/(X2 + 1). Let us again write X instead of X.
Then F×

9 = ⟨X + 1⟩, because:

(X + 1)1 = X + 1 (X + 1)2 = 2X (X + 1)3 = 2X + 1 (X + 1)4 = 2

(X + 1)5 = 2X + 2 (X + 1)6 = X (X + 1)7 = X + 2 (X + 1)8 = 1

Define now r1 := X + 1, r2 := 2X, r5 := X + 2 to be the representatives of the fourth
family of conjugacy classes. The computation of the character table is again very easy,
just use the facts 2̄ = ω4 = −1, vr1 = ω, vr2 = ω2 and vr5 = ω5. We get the following
character table:

I 2I u1 u2 d1,2 vr1 vr2 vr5
λ0 1 1 1 1 1 1 1 1

λ1 1 1 1 1 −1 −1 1 −1

ψ0 3 3 0 0 1 −1 −1 −1

ψ1 3 3 0 0 −1 1 −1 1

ψ0,1 4 −4 1 −1 0 0 0 0

χ1 2 −2 −1 1 0 −(ω + ω3) 0 ω + ω3

χ2 2 2 −1 −1 0 0 2 0

χ5 2 −2 −1 1 0 ω + ω3 0 −(ω + ω3)

Table 5: Character table of GL2(F3)

And we have that z := ω + ω3 satisfies z2 = −2.
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4 Modular representations of GL2(Fq)

Now we arrived at the last section, where we discuss the difference of our theory in char-
acteristic 0 and in characteristic p′, where p′ divides the group order.
As before consider K to be algebraically closed, G to be finite. Then we have the following

Proposition 4.1 ([Alp93, p. 14]). The number of irreducible representations of G equals
the number of conjugacy classes of G of elements or order not divisible by the characteristic
of K.

Let us investigate the number of p-regular conjugacy classes (that of order coprime to p)
of G = GL2(Fq) (with p divides q).
We will go through all four families of conjugacy classes beginning with the first:
It is easy to see that ord(sI) = ord(s) | q − 1, hence coprime to p.
For the second family, note that uks =

(
sk ksk−1

0 sk

)
, hence ord(us) = lcm(p, ord(s)) = p ·

ord(s). So divisible by p.
For the third one we have ord(ds,t) = lcm(ord(s), ord(t)) | q− 1, hence again coprime to p.
For the last family we get vr = ord(r) | q2 − 1, thus coprime to p.
All in all we have

(q − 1) +
(q − 1)(q − 2)

2
+
q2 − q

2
= q2 − q

p-regular conjugacy classes.
Note that our developed theory is not applicable to determine if a representation is ir-
reducible or not. Or if two irreducible representations are isomorphic or not. So new
methods would be required to do this. Since this thesis give no introduction into modular
representation theory, we have to compute representations by hand without any machin-
ery. As we see above, the growth of the p-regular classes is quadratic, so let us only
consider the case q = 2.
We saw in table 1 that GL2(F2) ∼= S3 has three irreducible different characters if char(K) =
0. But if we consider the case char(K) = 2, then χ1 and χ2 coincide. The proof that χ3 is
irreducible we gave in example 2.20, also works for all fields K with char(K) ̸= 3 (because
we divided by 3).
With the proposition above, we found all irreducible characters of GL2(F2) ∼= S3 in the
modular case char(K) = 2.
Consider again GL2(F2) ∼= S3, but now in characteristic 3, then there are two 3-regular
conjugacy classes. Hence χ1 and χ2 are all irreducible characters.
Now we have a phenomenon in the modular case, that we do not have in the regular case:
Maschke’s theorem is not true anymore.

Theorem 4.2. Let U be the subrepresentation of GL2(F2) ∼= S3 given in example 2.20
and let char(K) = 3. Then this representation is reducible, but not decomposable.

Proof. Let W = ⟨v1+v2+v3⟩ be a subrepresentation of U . It is easy to show that if there
is another one dimensional subrepresentation of U , then it has to be W . Hence U is not
irreducible, but indecomposable.
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Let us go back to the case char(K) = 2 and show that Maschke’s theorem fails here as
well.
Just consider the projection S3 ↠ S3/⟨(123)⟩ ∼= (F2,+) and compose it with the repre-
sentation given in example 1.23.

All in all we see that the modular representations behave different than that of the
regular representations. But they are not unrelated, since there are methods to lift repre-
sentations of characteristic p to characteristic zero and vice versa reducing representations
of characteristic zero to characteristic p. This is the main idea of the so called Brauer
Theory described in [Ser77].
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