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Nonlocal Games

A nonlocal game G is a classical interaction between a referee R and two cooperating
players, Alice and Bob:

R

A B

x y

a b

• Alice and Bob cannot communicate after re-
ceiving the questions x and y .

• They win if V (a, b, x , y) = 1 for some prede-
fined verification function V .

Alice and Bob can agree on a strategy before the game starts, aiming to maximize their
winning probability. For a specific strategy S, we denote the winning probability by ω(G, S).
The classical value

ωc(G) := sup
S∈Sc

ω(G, S)

is the maximal winning probability using classical strategies.
The quantum value

ωq(G) := sup
S∈Sq

ω(G, S)

is the maximal winning probability using quantum strategies.
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Clauser-Horne-Shimony-Holt (CHSH) Game

CHSH Game:

R

A B

x y

a b

|ψ⟩

• Questions and answers: a, b, x , y ∈ {0, 1}
• Winning condition: a ⊕ b = x · y

x y winning condition
0 0 a = b
0 1 a = b
1 0 a = b
1 1 a ̸= b

For the classical value, we have

ωc(GCHSH) = 75%.

For the quantum value, we have

ωq(GCHSH) = 1
2 + 1

2
√

2
≈ 85%.
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Kalai-Lombardi-Vaikuntanathan-Yang (KLVY) Compiler

The KLVY compiler transforms any nonlocal game G into an interactive protocol Gcomp
involving a single computationally bounded player and one referee.

Motivation for compiling nonlocal games:
• In practice, difficult to enforce that players do not communicate.
• The KLVY compiler provides a modular framework for constructing quantum

cryptographic protocols!

The KLVY compiler relies on a quantum homomorphic encryption scheme
QHE = (Gen,Enc,Eval,Dec).

R

A B

x y

a b
KLVY

V PEnc(sk, x)

α

y

b

The verifier V decrypts α to get a := Dec(sk, α), and then checks (a, b, x , y) using the
verification function of the underlying nonlocal game.

What can we say about the winning probabilities of Gcomp?
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Properties of the KLVY Compiler - Part I

Let G be a nonlocal game, and let Gcomp be the compiled game under the KLVY compiler.

Theorem (Quantum Completeness [KLVY22])
For every quantum strategy S for G, there exists a quantum strategy Scomp for Gcomp with

ωλ(Gcomp, Scomp) ≥ ωq(G, S)− negl(λ).

Achieved by running the strategy S sequentially: first evaluating Alice’s circuit on the
encrypted question using the homomorphic property of the QHE, and then performing
Bob’s circuit in the clear on the remaining state.

Theorem (Classical Soundness [KLVY22])
For every classical strategy S for Gcomp, we have

ωλ(Gcomp, S) ≤ ωc(G) + negl(λ).

Achieved by considering any single classical prover in the compiled game and constructing
two provers for the nonlocal game by rewinding the classical prover. Spatial separation is
ensured by the security of the encryption scheme.

These two results enable a variety of new protocols for Proofs of Quantumness.
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Properties of the KLVY Compiler - Part II

What about quantum soundness?

The work by Natarajan and Zhang [NZ23] established a quantum soundness result for the
compiled CHSH game, enabling them to produce a new protocol for Classical Verification
of Quantum Computation using a QFHE scheme as a black box!

Subsequent works established a bound on the quantum value of all compiled nonlocal
games:

Theorem (Quantum Soundness [KMPSW24])
Let G be any two-player nonlocal game, and let Gcomp be the compiled game under the
KLVY compiler.
The winning probability of any quantum prover cannot exceed the quantum commuting
operator value of G by more than any constant for a sufficiently large security parameter.
More precisely:
Let S be any quantum strategy for Gcomp. Then it holds that

lim sup
λ→∞

ωλ(Gcomp, S) ≤ ωqc(G).
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A New Compiler for Nonlocal Games

Why consider constructing another compiler?

• KLVY compiler relies on the existence of a QFHE scheme, which, until recently, was
only constructed from the LWE assumption. Would be nice to have compilers with
similar properties, but constructed from different (potentially weaker) cryptographic
assumptions.

• To find more noisy intermediate-scale quantum (NISQ) era friendly compilers.

• To gain a better theoretical understanding of the compilation process. Evidence that
the functionality offered by QFHE is not necessary, prompting the question of whether
this structure is essential for compiled nonlocal games.
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A New Compiler for Nonlocal Games

Our Results

• We present a novel compiler built upon the framework of measurement-based
quantum computation. The compiler can be instantiated assuming the existence of
any plain trapdoor claw-free function, which can be constructed from various
computational assumptions.

• Our construction relies on two cryptographic primitives:
(1) Blind Remote State Preparation:

We introduce a new blind remote state preparation protocol that is constructed
from any plain trapdoor claw-free function.

(2) Half-Blind Quantum Computation:
We provide a generalization of the universal blind quantum computation protocol
by Broadbent, Fitzsimons, and Kashefi [BFK09]. This generalization allows a
client to perform computations on arbitrary quantum states held by a server while
preserving the blindness of the computation.

• Our compiler satisfies quantum completeness.

• Our compiler satisfies quantum soundness.
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Blind RSP - Definition

A remote state preparation (RSP) protocol is a classical interaction between a PPT
algorithm V and a QPT algorithm P satisfying correctness:
• The protocol successfully terminates with a probability of at least 1

poly(λ) , where λ is
the security parameter. Furthermore, upon successful completion, the honest prover P
holds the state

Z b |+θ⟩ := Z b 1√
2

(
|0⟩+ e iθ |1⟩

)
for some bit b ∈ {0, 1} and angle θ ∈ {k · π/4 | k = 0, . . . , 7}. Meanwhile, the
verifier holds the pair (b, θ).

For the security definition, we call such an RSP protocol blind if:
• Any malicious QPT prover P∗ can guess θ at the end of the protocol only with a

probability negligibly close to 1
8 .
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Blind RSP - Construction (Part I)

Our blind RSP protocol relies on the existence of a plain trapdoor claw-free function.
• A Trapdoor Claw-Free Function (TCF) is a family of injective function pairs, along

with a trapdoor (f0, f1, td)← Gen(1λ), sharing the same domain and range, i.e.,
(f0, f1) : X → Y.
Claw-freeness refers to the property that, without the trapdoor, it is infeasible for a
QPT algorithm to find a claw, i.e., two elements x0, x1 ∈ X such that f0(x0) = f1(x1).
However, with access to the trapdoor, it becomes possible to efficiently invert an
image y ∈ Y to obtain a claw (x0, x1) such that f0(x0) = f1(x1) = y .

• There are several constructions of TCFs based on the Learning with Errors (LWE)
problem [BCMVV18], the Ring-LWE assumption [BKVV20], and general
cryptographic group actions, such as isogenies on elliptic curves [AMR22].
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Blind RSP - Construction (Part II)

Subroutine:
• (Input) The subroutine is parameterized by an integer n, and a state
|ψ⟩ = α |0⟩+ β |1⟩ held by the prover P.

• (Output) At the end of the interaction, the verifier holds (b, θ) ∈ {0, 1} × {0, 1, 2},
and the honest prover holds α |0⟩+ β(−1)bωθ

n |1⟩.

Blind RSP Protocol: Use the subroutine three times:
• Subroutine with n = 2 and |+⟩.

Let (b1, θ1) be the output of V , and |ψ1⟩ the output state of P.
• Subroutine with n = 4 and |ψ1⟩.

Let (b2, θ2) be the output of V , and |ψ2⟩ the output state of P.
• Subroutine with n = 8 and |ψ2⟩.

Let (b3, θ3) be the output of V , and |ψ3⟩ the output state of P.
The prover P holds the final state

|ψ3⟩ = 1√
2

(|0⟩+ (−1)bωθ
8 |1⟩) = Z b ∣∣+θ·π/4

〉
,

The verifier V holds

b := b1 ⊕ b2 ⊕ b3 and θ := 4θ1 + 2θ2 + θ3 mod 8.
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Blind RSP - Construction (Part III)

Subroutine parameterized by n and state |ψ⟩ = α |0⟩+ β |1⟩ held by the prover:

V
((f0, f1), td)← Gen(1λ)

(x0, x1)← Invert(td, y)
r0, r1 ←$ {0, 1}poly(λ)

b := d · (x0 ⊕ x1)
θ := x0r0 + x1r1

(f0, f1)

y

(r0, r1)

d

P(|ψ⟩)

Compute claw state
α |0, x0⟩+ β |1, x1⟩

with
f0(x0) = f1(x1) = y

1. Compute
α |0, x0,−x0r0⟩+ β |1, x1, x1r1⟩

2. Apply QFTn to last register and
measure; abort if outcome ̸= 1.
α |0, x0⟩+ ωx0r0+x1r1

n β |1, x1⟩
3. Measure last register in Hadamard

basis with outcome d ∈ {0, 1}p(λ).
α |0⟩+ β(−1)d·(x0⊕x1)ωx0r0+x1r1

n |1⟩
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Blind RSP - Correctness and Blindness

• Correctness of the main protocol follows immediately.
• Blindness is established by expressing θ as a sum of terms in the form

x0r0 ⊕ x1r1 = (x0 ∥ x1) · (r0 ∥ r1),

which allows for the repeated application of the quantum Goldreich-Levin theorem to
reduce blindness to the claw-freeness of the TCF.
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Recap of MBQC

Before proceeding to the half-blind quantum computation protocol, we recap the
measurement-based quantum computation (MBQC) model.

Task: Compute the quantum state U |+⟩⊗n.

In the quantum circuit model:
• Efficiently approximate U using a quantum circuit C that operates on n qubits and

consists of gates chosen from the universal quantum gate set {CX,H,T}.
• Initialize qubits in |0⟩⊗n, apply H⊗n, and then execute the sequence of gates that

approximate U.
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Recap of MBQC

Task: Compute the quantum state U |+⟩⊗n.

In the MBQC model:
• (State Preparation) Prepare multiple |+⟩ states and entangle them in a specific way

using CZ to construct the brickwork state:
· · ·
· · ·
· · ·
· · ·
· · ·

...
...

· · ·
· · ·

• (Computation) Single-qubit measurements are performed in a specific basis, starting
with the leftmost column and proceeding from top to bottom, then continuing with
the subsequent columns until all but the final column have been measured. Finally,
the qubits in the last column remain in the desired state (up to local Pauli operators).
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Recap of UBQC

We recap the Universal Blind Quantum Computation (UBQC) protocol by Broadbent,
Fitzsimons, and Kashefi [BFK09].

• UBQC involves a client and a powerful quantum server. The client requests the server
to apply an n× n unitary U to |+⟩⊗n, resulting in U |+⟩⊗n, while keeping U unknown
to the server.

⋄ Step 1: The client prepares single-qubit states |+θ⟩ := 1√
2

(|0⟩+ e iθ |1⟩) with

θ ←$ {k · π/4 | k = 0, . . . , 7} and sends them to the server, keeping θ secret.
⋄ Step 2: The server prepares n qubits in the |+⟩ state for the last layer and

entangles all qubits using CZ according to the brickwork state.
⋄ Step 3: Using the measurement pattern implementing U, the client instructs the

server to perform specific measurements. The server reports outcomes and ends
with U |+⟩⊗n, up to local Pauli operators.

• In step 3, the client adjusts the measurement angles to cancel out the randomness
introduced in step 1.

• The injected randomness ensures information-theoretic blindness: from the server’s
perspective, the measurement pattern for U appears uniformly random.
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HBQC

We generalize the UBQC protocol to apply a unitary U blindly to any quantum state |ψ⟩
held by the server, implementing (U ⊗ I) |ψ⟩. This is referred to as half-blind quantum
computation (HBQC). The HBQC protocol is nearly identical to UBQC, with key
modifications:

• Instead of using the |+⟩⊗n state as the first layer, use the first n qubits of |ψ⟩,
resulting in the computation (U ⊗ I) |ψ⟩. However, this prevents the client to inject
randomness into these qubits, posing a challenge for blindness.

• To circumvent this, eight additional layers, prepared by the server, are introduced at
the beginning.

• These first eight layers are measured in such a way to implement the identity gate.
The remaining qubits follow the original measurement pattern. Note that after the
first eight layers, the server measures client-prepared qubits containing injected
randomness.

Correctness and information-theoretic blindness are ensured as in UBQC. The intuition for
blindness is that the protocol effectively teleports |ψ⟩ to a position where randomness has
already been injected, replicating the effect of directly injecting randomness into |ψ⟩.
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Description of the New Compiler

Replace the quantum communication in HBQC with the blind RSP protocol to achieve
purely classical interaction. We call this the classical half-blind quantum computation
(CHBQC) protocol. Information-theoretical blindness is replaced by computational
blindness.

Our compiler: Let {Ux}x represent the unitaries corresponding to Alice’s strategy for the
game G. The prover and verifier execute the following interactive protocol:
⋄ The verifier samples a question pair (x , y).
⋄ The verifier and prover engage in the CHBQC protocol. The verifier’s input is Ux ,

while the prover’s state |ψ⟩ is arbitrary. Let a′ denote the prover’s output, and let a
be the verifier’s output derived from a′.

⋄ The verifier sends y to the prover in plaintext.
⋄ The prover responds with some b.
⋄ The verifier accepts if V (a, b, x , y) = 1.

What can we say about the winning probabilities of Gcomp?
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Properties of the New Compiler

Let G be any two-player nonlocal game, and let Gcomp be the corresponding compiled game
under our compiler

Theorem (Quantum Completeness)
For every quantum strategy S for G, there exists a quantum strategy Scomp for Gcomp with

ωλ(Gcomp, Scomp) ≥ ωq(G, S)− negl(λ).

Achieved by running the strategy S sequentially: first, blindly applying Alice’s unitary,
measuring her qubits, then applying Bob’s unitary, and measuring his qubits.

Theorem (Quantum Soundness)
Let S be any quantum strategy for Gcomp. Then it holds that

lim sup
λ→∞

ωλ(Gcomp, S) ≤ ωqc(G).

To prove this, we primarily leverage results from previous works in [NZ23, KMPSW24].
Only need to reprove the theorems where the security properties of the QHE scheme are
used, replacing them with the computational blindness properties of this compiler.
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Summary

• Constructed a new compiler:
Transforms any nonlocal game into a single-prover interactive protocol by combining
our blind RSP protocol with our generalized UBQC protocol.
Relies solely on the existence of plain quantum-secure TCFs.

• Compiler satisfies quantum completeness.
• Compiler satisfies quantum soundness.

Thank you for your attention!
Questions?
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