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Abstract

In this thesis, we present a novel compiler that transforms any nonlocal game into a single-prover
protocol, ensuring both quantum completeness and quantum soundness. This compiler is built
upon the framework of measurement-based quantum computation and can be instantiated
assuming the existence of any plain trapdoor claw-free function. Our construction relies on two
cryptographic primitives:

(1) Blind Remote State Preparation: We present a new blind remote state preparation protocol,
which is constructed from any plain trapdoor claw-free function.

(2) Half-Blind Quantum Computation: We present a generalization of the universal blind
quantum computation protocol by Broadbent, Fitzsimons, and Kashefi. This generalization
enables a client to perform computations on arbitrary quantum states held by a server while
preserving the blindness of the computation.

By combining these two primitives, we construct a classical version of the half-blind quantum
computation protocol, which serves as the core mechanism of our compiler.
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Chapter 1

Introduction

A nonlocal game is a classical interaction between a referee and two non-communicating players.
The game starts with the referee sampling a question pair and sending one question to each
of the players. The players then respond with answers. Finally, the referee evaluates whether
the answers, in conjunction with the questions, satisfy a predefined condition. If they do, the
players win; otherwise, they lose. An important aspect of such games is that the players are
not allowed to communicate during the execution of the game, and so they are unaware of the
questions or answers of the other players. However, the rules of the game, including the winning
conditions, are fixed ahead of time and are known to the players. This allows them to meet and
agree beforehand on a strategy to maximize their winning probability. Additionally, they are
permitted to share resources prior to the game, such as shared classical randomness or quantum
resources like entangled qubits. Depending on their allowed shared resources, one speaks of
the classical value or quantum value of the nonlocal game, representing the maximal winning
probability under the given constraint to behave classically or quantumly.

Nonlocal games were introduced by physicist John Stewart Bell in 1964 [Bel64] in response
to the Einstein–Podolsky–Rosen (EPR) paradox [EPR35], which presents a thought experiment
questioning whether quantum mechanics provides a complete description of physical reality,
leading to the conclusion that it should be supplemented by another specific physical theory.
Bell’s groundbreaking work, however, showed that this specific theory must satisfy a constraint
now known as Bell’s inequality. Bell further argued that the correlations of quantum mechanics
violate these inequalities, demonstrating the incompatibility between those physical theories.
Subsequent work by Clauser, Horne, Shimony, and Holt (CHSH) refined Bell’s theorem into
a more experimentally testable form [CHSH69], which is nowadays celebrated as the CHSH
game, the prime example of a nonlocal game. It was shown that in this nonlocal game, the
quantum value is strictly greater than the classical value. This enables the CHSH game to
experimentally detect a difference between classical and quantum correlations, or in other words,
to demonstrate the presence of quantum entanglement. These theoretical insights were validated
through experimental tests, commonly referred to as Bell tests. The first such test was conducted
by Clauser and Freedman in 1972 [FC72], followed by Alain Aspect et al. in 1982 [AGR82,
ADR82] and by Anton Zeilinger et al. in 1998 [WJSWZ98]. Together, Alain Aspect, John F.
Clauser, and Anton Zeilinger were awarded the 2022 Nobel Prize in Physics [Out22]. Nonlocal
games have also become a fundamental subject of study in other disciplines, such as computer
science, providing, for example, a protocol for Classical Verification of Quantum Computations
[Gri19].

Since the assumption that players do not communicate is difficult to enforce from a practical
point of view, recent work by Kalai, Lombardi, Vaikuntanathan, and Yang (KLVY) in [KLVY23]
introduced a generic procedure for transforming any k-player nonlocal game into an interactive
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protocol involving a single computationally bounded player. One refers to a generic procedure
for converting any nonlocal game into a single-player protocol as a compiler. To achieve this,
the KLVY compiler relies on the existence of a quantum fully homomorphic encryption (QFHE)
scheme. The basic idea is to ask the single player to simulate the computations of all players in
the original nonlocal game and, to ensure that no communication occurs, the question of each
player is encrypted under a different key. The player should be able to compute on the encrypted
questions, which is why the KLVY compiler relies on the existence of quantum homomorphic
encryption schemes such as those presented in [Mah18a, Bra18].

Such a compiler has been shown to be a useful primitive not only for overcoming the spatial
separation assumption but also for other applications. In the same paper, the authors of the
KLVY compiler presented a new protocol for a proof of quantumness by transforming the
CHSH game into a single-prover protocol. A protocol for a proof of quantumness is particularly
interesting as it allows a classical verifier to confirm, through classical interaction with a device
claiming to be quantum, that the device indeed behaves quantumly by observing behavior that
cannot be explained classically. This is analogous to the case in nonlocal games, where the
winning probability exceeding the classical value implies that the players cannot be classical.
Furthermore, subsequent work by Natarajan and Zhang [NZ23] leveraged this compiler to develop
an alternative approach for Classical Verification of Quantum Computations protocols. More
recently, a protocol with a succinct verifier was proposed [MNZ24], improving on prior work
[BKLMM+22], which relied on stronger cryptographic assumptions. Additional work has been
done to understand the KLVY compiler itself by studying the winning probability of the compiled
game, trying to bound it in terms of the original nonlocal game it arose from. Bounding the
quantum value of the compiled CHSH game was done in [NZ23], followed by bounds on compiled
XOR games [CMMNP+24, BVBDM+24, MPW24], a specific class of nonlocal games. Recently,
[KMPSW24] provided a bound on the quantum value of all compiled nonlocal games.

As these applications demonstrate, compilers provide a modular framework for constructing
quantum cryptographic protocols. Researchers can focus on the information-theoretic multi-
player setting, which is typically simpler and well-studied, and then compile these nonlocal
games into single-prover protocols. The established theorems about the compiler take care of
the rest.

At present, we know of only two such recipes to transform nonlocal games into compiled
ones, i.e., the aforementioned KLVY compiler and the one presented in the work of Arora et al.
[ABCC24]. The latter proposes a compiler for contextuality games, a generalization of nonlocal
games. As the work was published during the preparation of this thesis, the author did not
explore Arora et al.’s work in full detail and will therefore not discuss it further to avoid spreading
incorrect information. The KLVY compiler relies on a rather strong cryptographic primitive,
namely the existence of QFHE schemes.

From a cryptographic perspective, QFHE is a rather strong primitive, both in terms of
functional guarantees and in terms of the underlying computational assumptions. There is
evidence that the functionality offered by QFHE is not necessary for compiling nonlocal games,
as some form of blind computation suffices. This situation is, from a theoretical point of view,
unsatisfactory, as it underscores a lack of understanding of this cryptographic process and places
compiled nonlocal games on potentially thin cryptographic foundations.

The goal of our work is to improve our understanding of this cryptographic process and
to place compilers for nonlocal games on more solid cryptographic foundations. Motivated by
this, we propose and investigate an alternative compilation method based on potentially weaker
cryptographic assumptions. Our compiler can be constructed from plain trapdoor claw-free
functions, which themselves can be built from various computational assumptions, such as
isogeny-based group actions presented in [AMR22], the learning with errors (LWE) problem
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in [BCMVV18], or the Ring-LWE assumption in [BKVV20], whereas the only known QFHE
schemes working for the KLVY compiler rely on the LWE problem.

Organization of the thesis. The remainder of the thesis is organized as follows:
In Chapter 2, we begin by providing the preliminary background and required knowledge for

this thesis to make it as self-contained as possible. We define the quantum information-theoretic
and cryptographic objects we will be dealing with and introduce new notation and terminology
used throughout this work.

In Chapter 3, we present a new protocol for blind remote state preparation for a specific
class of quantum states, based on plain trapdoor claw-free functions, which are defined in that
chapter. Furthermore, we provide proofs of correctness and blindness for our construction.

In Chapter 4, we recap the measurement-based quantum computation model by gradually
developing the necessary theory and reproving its key theorems. The chapter also includes a
proof of the universality of the brickwork state.

In Chapter 5, we present a new protocol that generalizes the universal blind quantum
computation protocol by Broadbent, Fitzsimons, and Kashefi. We also provide proofs of
correctness and information-theoretical blindness for this protocol. Subsequently, we use the
blind remote state preparation protocol to make the interaction in the protocol purely classical,
and we once again provide proofs of correctness and computational blindness for the protocol.

In Chapter 6, we provide a brief introduction to nonlocal games and recap the KLVY
compiler. Next, we introduce our novel compiler and provide proofs for quantum completeness
and quantum soundness. Lastly, we present a concrete compilation process by compiling the
CHSH game and compare our compiler to the KLVY compiler.
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Chapter 2

Preliminaries

In this chapter, we provide the basic definitions of the quantum information-theoretic and
cryptographic objects we will be dealing with. Additionally, we introduce new notation and
terminology used throughout this work to establish the foundation for our results.

We denote the set of positive integers by N, i.e., N := {1, 2, 3, . . .}. For n ∈ N, we denote by
Zn the ring of integers modulo n, with elements in {0, . . . , n− 1}. The inner product of two bit
strings a, b ∈ {0, 1}n of length n is defined as

a · b :=
n⊕

i=1
ai · bi ∈ {0, 1},

where ai and bi refer to the i-th bits of the respective strings. Given two bit strings r0 and r1,
we denote their concatenation by r0 ∥ r1. We denote by ωn := e2πi/n the n-th root of unity.
For a, b ∈ Z, the notation Ja, bK is used to indicate the set {a, a+ 1, a+ 2, . . . , b}. Moreover, we
define [n] := J1, nK = {1, . . . , n} for n ∈ N. Lastly, we define the set

Θ := {k · π/4 | k = 0, . . . , 7},

since we will be working extensively with it.

2.1 Quantum Information and Computation
In this section, we provide preliminary background and recap the most fundamental concepts of
quantum information and quantum computation, without any claim to completeness, as this
is not the goal of the thesis. For a more in-depth introduction to quantum information and
quantum computation, we refer the reader to [NC10].

Quantum Information. In quantum mechanics, physical systems are often identified with
Hilbert spaces. We will briefly recall the definition of a Hilbert space.

Definition 2.1 (Hilbert Space). A Hilbert space H is a complex vector space equipped with an
inner product ⟨·|·⟩ such that the induced metric space is complete.

Unless stated otherwise, we will restrict our discussion to finite-dimensional Hilbert spaces,
where the completeness of H is automatically satisfied. When the dimension of the Hilbert space
is d, one often identifies H with Cd equipped with the standard inner product, as these spaces
are mathematically isomorphic. Elements of H are usually written using bra-ket notation; that
is, vectors in H are denoted by |ψ⟩. The Hilbert space of dual vectors is denoted by H∗ and
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consists of linear maps H → C. Vectors in H∗ are denoted by ⟨ψ|, corresponding to the linear
map |ϕ⟩ 7→ ⟨ψ|ϕ⟩. We will denote the set of linear operators from H to H by Lin(H), the adjoint
of U ∈ Lin(H) by U †, and the identity operator by I.

The state of a quantum system with Hilbert space H is represented by a density operator.

Definition 2.2 (Density Operator). A density operator ρ ∈ Lin(H) is a positive semi-definite
(PSD) operator with trace one. A quantum state is called pure if the density operator has rank
one; otherwise, it is called mixed.

Pure states can be identified with unit-norm vectors |ψ⟩ ∈ H using the formula ρ = |ψ⟩⟨ψ|,
which also holds conversely, meaning that any pure state can be expressed in this way. This
allows us to represent pure states as unit vectors in H instead of density operators.

Quantum states can be manipulated by applying unitary transformations to them.

Definition 2.3 (Unitary Operator). A unitary operator is a linear operator U ∈ Lin(H) that
satisfies UU † = U †U = I.

When a unitary U is applied to a state ρ (resp. |ψ⟩), the resulting state is given by UρU †
(resp. U |ψ⟩).

To extract information from a quantum system, measurement devices are required, which
provide classical outcomes to work with. The general formalism will now be defined.

Definition 2.4 (Positive Operator-Valued Measure and Projection-Valued Measure). A positive
operator-valued measure (POVM) on H with a finite outcome set O is a collection of PSD
operators {Mi}i∈O acting on H, which satisfy the completeness property

∑
i∈OMi = I.

If each Mi is additionally an orthogonal projection, then the collection is called a projection-
valued measure (PVM).

Naimark’s well-known dilation theorem demonstrates how POVMs can be obtained from
PVMs acting on a larger Hilbert space. This result is critically important in quantum mechanics,
as it provides a way for physically realizing POVM measurements. When performing a mea-
surement on a quantum state ρ using a POVM {Mi}i∈O, the outcome i ∈ O is observed with
probability pi := tr(Miρ). Furthermore, when a PVM is used for the measurement, the state
collapses to MiρMi/pi. For POVMs, however, the post-measurement state is not determined by
the POVM itself but rather by the specific PVM that realizes it (there may be infinitely many
possible realizations).

A measurement on a quantum state yields a post-measurement state that is, by definition,
normalized—that is, it has trace one (or norm one in the case of pure states). In this work,
however, we will also consider states that are not renormalized, as they are mathematically
convenient to work with.

Definition 2.5 (Subnormalized State). A subnormalized state is a PSD operator acting on H
with a trace less than or equal to 1 (for pure states, this corresponds to a pure state with a norm
less than or equal to 1).

Operationally, this corresponds to post-selecting on a measurement outcome without renor-
malizing the state.

We will often consider measurement apparatuses with multiple measurement settings, labeled
by an index set I, but with the same outcome set O for each setting. This is denoted by
{{Mxa}a∈O : x ∈ I}, where {Mxa}a∈O is a POVM with outcomes in O for each x ∈ I. When
clear from context, we abbreviate this as {Mxa}a∈O,x∈I .

Another formalism for measurements involves the use of so-called observables. This formalism
will be convenient for our purposes, as it provides a more concise way to describe specific
procedures. It is in fact a special case of PVMs, where the outcomes are real numbers.
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Definition 2.6 (Observable). An observable O ∈ Lin(H) is a Hermitian operator. If it
additionally satisfies O2 = I, it is called a binary observable.

By the spectral theorem, observables have a spectral decomposition O = ∑
i λiΠi, with

eigenvalues λi ∈ R, and Πi being projections onto the i-th eigenspace of O. These projections
form a PVM with an outcome set consisting of the corresponding eigenvalues. We say that we
measure an observable O if we use its projections as a PVM, with the outcome set corresponding
to the eigenvalues. For binary observables, the eigenvalues are obviously restricted to {−1,+1}.
When measuring a binary observable O, we adopt the convention that the outcome corresponds
to m ∈ {0, 1} if the measured eigenvalue was originally (−1)m, which is simply a reinterpretation
of the outcome.

Quantum Computation. Alan Turing introduced the concept of an idealized theoretical
computer, the Turing machine, even before physical computers existed [Tur36]. A Turing machine
serves as a computational model in theoretical computer science, used to analyze classical
algorithms and capture the fundamental aspects of algorithms regarding time complexity (the
amount of computer time it takes to run the algorithm) and space complexity (the amount
of memory space it takes to execute the algorithm), independent of the specific machine on
which the algorithm is executed. Again, for a more in-depth introduction, we refer the reader to
[NC10]. In practice, however, we typically use the so-called circuit model, which is equivalent
in computational power to the Turing machine but more convenient and realistic for many
applications. A circuit consists of wires encoding the information 0 or 1 (i.e., each wire contains
a bit of information) and gates applied to these wires to manipulate the classical state in a
controlled manner. By repeating this process, the circuit can perform computational tasks. In
both models, this process is usually referred to as an algorithm, which may use random bits as a
resource. We now define what it means to have a probabilistic polynomial-time algorithm.

Definition 2.7 (Probabilistic Polynomial-Time Algorithm). A probabilistic polynomial-time
(PPT) algorithm is a probabilistic Turing machine that runs within a polynomial time bound,
meaning there exists a polynomial poly such that for every input x ∈ {0, 1}∗, the machine halts
after at most poly(|x|) steps.

In the quantum world, there are also several equivalent computational models, each with
distinct features that can be useful for practically building quantum computers. Among the
well-known models are the adiabatic quantum computation model, the measurement-based
quantum computation model, and the quantum circuit model. In the following, we will briefly
describe the quantum circuit model. For this, we need the concept of a universal quantum
gate set, which is, loosely speaking, a set of quantum gates S such that any unitary operation
can be approximated to arbitrary accuracy by a finite sequence of gates from the set S. The
Solovay–Kitaev theorem provides a quantitative statement indicating that the number of gates
needed to achieve a desired level of approximation grows only slowly with its required accuracy.
One typically considers S = {CX, H, T} as a universal quantum gate set [BMPRV00], where the
definitions of these three gates are provided later in this section. We can now formally define
what is meant by a quantum circuit.

Definition 2.8 (Quantum Circuit). A quantum circuit is a unitary operator that operates on the
Hilbert space H = (C2)⊗k for some number k of qubits. It is given by a composition of unitary
gates, each of which operates on one or two qubits, chosen from a fixed universal quantum gate
set. The size of a quantum circuit refers to the number of gates it contains.

Typically, the qubits are divided into input qubits and auxiliary qubits, which are assumed
to be initialized in the |0⟩ state unless stated otherwise. If a classical outcome is desired, a
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subset of the qubits is measured after the unitary circuit has been applied. We will now extend
the concept of a polynomial-time algorithm to the quantum case.

Definition 2.9 (Quantum Polynomial-Time Algorithm). A quantum polynomial-time (QPT)
algorithm consists of a family of quantum circuits {Cn}n∈N and a deterministic polynomial-time
Turing machine that, on input 1n, outputs a classical description of Cn.

We emphasize that any PPT algorithm can be converted into a QPT algorithm. Specifically,
for any n, there exists a quantum circuit Cn with n input qubits such that, given the input |x⟩
and by measuring a suitable number of qubits, it simulates the behavior of the PPT algorithm
on any bit string x of length |x| = n. As we are concerned with efficient algorithms, we also
want to define what it means to efficiently implement a family of POVMs.

Definition 2.10 (QPT-Implementable). A family of POVMs {{Πn,i}i∈In}n∈N is said to be
QPT-implementable if there exists a QPT algorithm with a family of quantum circuits {Cn}n∈N
such that Cn realizes the POVM {Πn,i}i∈In. That is, by measuring certain output qubits and
performing classical post-processing, one obtains the same probabilities as those given by the
POVM.

Lastly, we will introduce some notation used throughout this work. We begin by denoting
the usual Pauli operators by

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
.

Moreover, we denote the controlled-X, the controlled-Z, the Hadamard matrix, and the T matrix
by

CX,CZ, H = 1√
2

(
1 1
1 −1

)
and T =

(
1 0
0 eiπ/4

)
=
(

1 0
0 1+i√

2

)
.

Sometimes, we also write CZi,j to denote the application of the CZ operator between the qubits
at the i-th and j-th positions, with the control on the i-th qubit. Lastly, for any θ ∈ R, we
define the rotation operators as follows:

Rx(θ) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
,

Ry(θ) =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
,

Rz(θ) =
(
e−iθ/2 0

0 eiθ/2

)
.

Additionally, the phase shift operator is defined as:

P (θ) =
(

1 0
0 eiθ

)
= eiθ/2 ·Rz(θ),

which is equivalent to Rz(θ) up to a global phase. The rotation operators are commonly known
as the rotation about the x-axis, rotation about the y-axis and the rotation about the z-axis,
respectively, with respect to the Bloch sphere, a visualization of the quantum states of a single
qubit. Since a deeper understanding of the Bloch sphere is unnecessary here, we refer the curious
reader to [NC10].

As we will be working with the quantum Fourier transform, let us define it here for the sake
of completeness.
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Definition 2.11 (Quantum Fourier Transform). The quantum Fourier transform QFTn : Cn →
Cn is defined for any n ≥ 2 as the linear map given by

QFTn |x⟩ := 1√
n

∑
z∈Zn

ωxz
n |z⟩ ∀x ∈ Zn,

where we write |z⟩ with z ∈ Zn for the standard basis of Cn.

It is a well-known fact that the quantum Fourier transform is a unitary operator and can be
efficiently implemented [Kit95].

2.2 Cryptography
Throughout this work, we denote the security parameter by λ ∈ N. Let 1λ denote the bit string
of length λ consisting only of ones. Now, we come to one of the most central definitions in
modern cryptography.

Definition 2.12 (Negligible Function). A function negl : N→ R is called negligible if for every
positive polynomial poly there exists an integer N > 0 such that

|negl(λ)| < 1
poly(λ) ∀λ > N.

This term often arises in the context of problems or assumptions indicating that specific tasks
are computationally infeasible for algorithms with bounded computational resources, thereby
providing a security guarantee. This concept will be demystified throughout the thesis, with
explicit examples illustrating it in action.

For a finite set S, a probability distribution µ, and a (classical or quantum) algorithm A, we
write s← S or s ←$ S, s← µ, and s← A to denote, respectively, sampling a uniformly random
element s from S, sampling s according to the distribution µ, and running the algorithm A that
produces the output s.

Next, we introduce probability ensembles that consider sequences of probability distributions
indexed by the security parameter.

Definition 2.13 (Probability Ensemble). Let Xλ be a probability distribution for each λ ∈ N.
Then, the family of probability distributions X := {Xλ}λ∈N, indexed by the security parameter λ,
is called a probability ensemble.

We are now ready to define another central concept in modern cryptography.

Definition 2.14 (Computational Indistinguishability). Let X := {Xλ}λ∈N and Y := {Yλ}λ∈N
be two probability ensembles. We say that X and Y are computationally indistinguishable if
there exists a negligible function negl such that for all QPT algorithms A, it holds that∣∣∣∣ Pr

x←Xλ

[
1← A(1λ, x)

]
− Pr

y←Yλ

[
1← A(1λ, y)

]∣∣∣∣ ≤ negl(λ).

We often abbreviate computational indistinguishability by X ≈c Y.

A possible interpretation of computational indistinguishability is that QPT algorithms
attempting to distinguish between the two ensembles cannot succeed with reasonable probability;
any such algorithm performs only negligibly better than random guessing. This definition
encapsulates the idea that algorithms with computationally bounded resources gain no significant
advantage in attempting to break the security of real-world schemes.
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Chapter 3

A New Blind Remote State
Preparation Protocol

In this chapter, we present a new protocol for blind remote state preparation (blind RSP) for a
specific class of quantum states. We begin by formally defining a blind RSP protocol within our
setting, then introduce a well-known cryptographic primitive called trapdoor claw-free functions
(TCFs), which we ultimately use to construct the blind RSP protocol. Lastly, we provide proofs
of correctness and blindness to show that our construction satisfies the properties required in
the definition.

The results in this chapter enable us to replace the quantum communication in the protocol
presented in Section 5.1 with classical communication, forming the central component of our
compiler as outlined in Section 5.2. While this chapter offers the theoretical foundation to
make this possible, it is not necessary to understand the inner workings of our blind RSP
protocol, as we later adopt a modular approach that uses the abstract definition of a blind
RSP protocol rather than a specific implementation. This approach allows any protocol that
meets our definition to be used in the compiler, potentially enabling constructions based on new
computational post-quantum assumptions. Our blind RSP protocol relies only on the existence
of plain TCFs, which can be constructed from various computational assumptions. One example
is the construction in [AMR22], which uses isogeny-based group actions, indicating that our
compiler can ultimately be constructed from isogeny-based cryptography, for example.

3.1 Definition of Blind Remote State Preparation
A remote state preparation (RSP) protocol is, loosely speaking, a classical interaction between
two parties, commonly referred to as the verifier and the prover. In this setup, the verifier is
considered classical, while the prover is quantum. By the end of the protocol, the prover should
hold a quantum state from a specified fixed set, and the verifier holds a classical description of
this quantum state.

In practice, additional properties are often desirable for an RSP protocol to satisfy. Two
commonly desired properties are blindness and verifiability. Loosely speaking, blindness ensures
that the prover gains no information about the quantum state during the interaction with the
verifier, while verifiability guarantees that the verifier can be sure that an arbitrary (computa-
tionally bounded) prover successfully interacting with the verifier must have prepared a specific
quantum state. In our work, we focus on the blindness property, as it suffices for our purposes.

The general purpose of RSP protocols is to replace quantum communication (i.e., transmitting
qubits between two parties) with classical communication between the parties involved. This
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makes it possible to leverage the advantages provided by powerful quantum computers even
when classical parties are participating. One example application is the verifiability of delegated
quantum computation [GV19].

We will now provide a formal definition of a blind RSP protocol for remotely preparing states
of the form

|+θ⟩ := 1√
2

(
|0⟩+ eiθ |1⟩

)
up to a random Pauli Z operator, where θ ∈ Θ := {k · π/4 | k = 0, . . . , 7}.

Definition 3.1 (Blind Remote State Preparation). A remote state preparation (RSP) protocol
consists of a pair of interactive algorithms (V, P ), with the security parameter in unary 1λ as
input: A classical probabilistic polynomial-time algorithm V , called the verifier, and a quantum
polynomial-time algorithm P , called the prover. We require the protocol to satisfy the following
properties:

• (Correctness) The protocol successfully terminates with a probability of at least 1
poly(λ) , which

is inverse-polynomial in the security parameter. Furthermore, upon successful completion, the
honest prover P holds the state

Zb |+θ⟩

for some bit b ∈ {0, 1} and angle θ ∈ Θ. On the other hand, the verifier holds the pair (b, θ).

• (Blindness) Consider the following experiment Exp(1λ, V, P ∗) played between an honest verifier
V and a possibly malicious prover P ∗.

– The players engage in the interactive RSP protocol. If the protocol does not terminate
successfully, the experiment aborts.

– Let (b, θ) be the output of V .
– The verifier flips a coin c ←$ {0, 1}. If c = 0, V sets θ′ := θ, otherwise V samples a

uniform θ′ ←$ Θ.
– V sends θ′ to P ∗, who returns a bit c′.
– The experiment outputs 1 if c′ = c and 0 otherwise.

We say that an RSP protocol is blind if for all QPT adversaries P ∗ there exists a negligible
function negl such that for all λ ∈ N it holds that:∣∣∣∣Pr

[
Exp(1λ, V, P ∗) = 1 | no abort

]
− 1

2

∣∣∣∣ ≤ negl(λ).

The intuition behind the definition of blindness is that, upon successful completion, no QPT
adversary P ∗ can distinguish between the distribution of θ ∈ Θ and that of a uniformly random
θ′ ∈ Θ. We expressed the game as a decisional game; however, since Θ has constant size in λ,
we could also phrase it as a computational game, where the adversary must guess θ directly.
Both variants are equivalent in the sense that if one has a negligible advantage for all QPT
adversaries, so does the other (this holds even for polynomial-sized sets), a well-known fact in
the cryptography community.

3.2 Trapdoor Claw-Free Functions
The concept of a trapdoor claw-free function (TCF) was first introduced in [GMR84]. Nowadays,
they form a powerful post-quantum secure cryptographic primitive. Roughly speaking, a TCF
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is a family of injective function pairs (f0, f1) : X → Y sharing the same domain and range,
along with a trapdoor td. Claw-freeness refers to the property that, without the trapdoor, it is
infeasible to find a claw—two elements x0, x1 ∈ X such that f0(x0) = f1(x1). However, with
access to the trapdoor, it becomes possible to efficiently invert an image y ∈ Y to obtain a claw
(x0, x1) such that f0(x0) = f1(x1) = y.

TCFs (and their modified variants) are used in numerous applications, such as Proof of
Quantumness [BCMVV18], Classical Verification of Quantum Computations [Mah18b], and
Remote State Preparation [GV19, AMMW24], to name a few. We will utilize TCFs to construct
our blind RSP protocol.

We will now recap the formal definition of a TCF, primarily following [BGKPV23].

Definition 3.2 (Trapdoor Claw-Free Function). Let λ be the security parameter. A trapdoor
claw-free function (TCF) consists of a family of injective function pairs (f0,λ, f1,λ) and finite
sets Xλ and Yλ with

{fb,λ : Xλ → Yλ}(b,λ)∈{0,1}×N ,

where we omit the subscript λ when it is clear from the context. Additionally, a TCF pair is
augmented with two algorithms.

• Gen(1λ): On input the security parameter in unary 1λ, the polynomial-time generation
algorithm outputs a function pair (f0, f1) and a trapdoor td.

• Invert(td, y): On input an image y ∈ Y and the trapdoor td, the polynomial-time deterministic
inversion algorithm returns two preimages (x0, x1).

We require a TCF to satisfy the following properties:

• (Correctness) For all λ ∈ N, all x ∈ X , and all b ∈ {0, 1}, it holds that:

f0(x0) = f1(x1) = y where (x0, x1)← Invert(td, fb(x)) and ((f0, f1), td)← Gen(1λ).

• (Efficient Superposition) There exists a QPT algorithm that, on input the description of the
functions (f0, f1), prepares the state

1√
|X |

∑
x∈X
|x⟩ .

• (Claw-Freeness) For all QPT algorithms A∗ there exists a negligible function negl such that
for all λ ∈ N it holds that:

Pr[(x∗0, x∗1)← A∗(f0, f1) : f0(x∗0) = f1(x∗1)] ≤ negl(λ).

where ((f0, f1), td)← Gen(1λ).

Note that, given the trapdoor, we can efficiently check membership in Y by simply running
the inversion algorithm and checking whether it succeeds. Moreover, we assume that there exists
an embedding of the set Xλ into the bit strings {0, 1}p(λ) for some fixed polynomial p.

In this thesis, we work with a plain TCF without any modifications, as defined above.
Additionally, we adopt a black-box approach without referencing the internal workings of a specific
TCF instantiation, making our approach much more modular. This implies that our compiler
ultimately relies on the computational assumption used in the chosen TCF implementation,
allowing our compiler to accommodate a variety of computational assumptions. To this end, we
will briefly discuss different constructions of TCFs based on various computational assumptions.
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Examples include the Learning with Errors (LWE) problem, which was used to create a variant of
a TCF called a noisy TCF in [BCMVV18]. This was later extended to the Ring-LWE assumption
in [BKVV20]. Finally, [AMR22] explored the use of general cryptographic group actions, such
as isogenies on elliptic curves, to construct TCFs. Our blind RSP protocol also supports noisy
TCFs, as we do not rely on the additional properties. However, for notational convenience, we
will stick to the plain TCF definition established earlier.

3.3 A New Protocol
At a technical level, our work is inspired by Gheorghiu and Vidick [GV19] and by Brakerski
et al. [BGKPV23]. As mentioned earlier, our protocol relies on the existence of an arbitrary
plain TCF (Gen, Invert), as described in Section 3.2. We emphasize again that there exists an
embedding of the set Xλ into the bit strings {0, 1}p(λ) for some fixed polynomial p.

We are now prepared to outline our blind RSP protocol. Before presenting the main protocol,
however, we will first describe a subroutine that the verifier V and prover P will execute multiple
times within it.

Subroutine. The input and output of the subroutine are:

• (Input) The subroutine is parameterized by the security parameter in unary 1λ, an integer
n, and a state |ψ⟩ = α |0⟩+ β |1⟩ held by the prover P .

• (Output) At the end of the interaction, the verifier holds a pair (b, θ) ∈ {0, 1} × {0, 1, 2},
and the prover holds the state α |0⟩+ β(−1)bωθ

n |1⟩.

The interaction between P and V proceeds as follows:

• (Verifier 1st Message) Sample ((f0, f1), td)← Gen(1λ) and send (f0, f1) to P .

• (Prover 1st Message) Prepare the state

|ψ⟩ ⊗ 1√
|X |

∑
x∈X
|x⟩ = 1√

|X |
∑
x∈X

α |0, x⟩+ β |1, x⟩ .

Then, apply the isometric mapping that evaluates fb coherently on input the second
register, with the function controlled on the first register, to obtain the state

1√
|X |

∑
x∈X

α |0, x, f0(x)⟩+ β |1, x, f1(x)⟩ .

Measure the last register to obtain some y ∈ Y, with the residual state being

α |0, x0⟩+ β |1, x1⟩ ,

where f0(x0) = f1(x1) = y. Send y to V .

• (Verifier 2nd Message) Check if y ∈ Y and abort if not. Sample two strings r0, r1 ←$ {0, 1}p(λ)

uniformly at random. Send (r0, r1) to P .

• (Prover 2nd Message) Consider the isometric mapping

M : {0, 1} × X → {0, 1} × X × Zn

(b, xb) 7→ (b, xb, (−1)1−b(xb · rb)),
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where the inner product zb := xb · rb ∈ {0, 1} is computed over Z2 and then parsed as an
element of Zn. Apply M to the current state to compute

α |0, x0,−(x0 · r0)⟩+ β |1, x1, x1 · r1⟩ = α |0, x0,−z0⟩+ β |1, x1, z1⟩ .

Apply QFTn to the last register to obtain

1√
n

∑
d′∈Zn

(ω−d′·z0
n α |0, x0⟩+ ωd′·z1

n β |1, x1⟩)
∣∣d′〉 ,

where −d′ · z0, d
′ · z1 ∈ Zn. Measure the last register in the computational basis and abort

if the output d′ ̸= 1. The state becomes

ω−z0
n α |0, x0⟩+ ωz1

n β |1, x1⟩ ≡ α |0, x0⟩+ ωz0+z1
n β |1, x1⟩ .

Conditioning on not aborting, measure the second register in the Hadamard basis to obtain
some d ∈ {0, 1}p(λ), and return the state

α |0⟩+ β(−1)d·(x0⊕x1)ωz0+z1
n |1⟩ .

Send d to V .

• (Verifier Output) Recompute (x0, x1) ← Invert(td, y) and set b := d · (x0 ⊕ x1) and
θ := z0 + z1 = x0 · r0 + x1 · r1 ∈ {0, 1, 2}, where the sum is computed over Z.

We are now in a position to describe our main protocol.

Blind RSP Protocol. Our main protocol uses the subroutine three times, as follows:

• Run the subroutine with n = 2 and set |+⟩ to be P ’s input state. Let (b1, θ1) be the
output of V , and let |ψ1⟩ be the output state of P .

• Run the subroutine with n = 4 and set |ψ1⟩ to be P ’s input state. Let (b2, θ2) be the
output of V , and let |ψ2⟩ be the output state of P .

• Run the subroutine with n = 8 and set |ψ2⟩ to be P ’s input state. Let (b3, θ3) be the
output of V , and let |ψ3⟩ be the output state of P .

The prover P returns the final state |ψ3⟩, whereas the verifier V sets

b := b1 ⊕ b2 ⊕ b3 and θ := 4θ1 + 2θ2 + θ3 mod 8

and must multiply θ by π/4 to obtain the desired angle.

3.3.1 Correctness

Now, we will prove the correctness of our RSP protocol.

Theorem 3.3. The RSP protocol described in Section 3.3 is correct.

Proof. The probability that all three subroutines do not abort is 1
2 ·

1
4 ·

1
8 = 1

64 , as in all three
subroutines we need d′ = 1. In the first subroutine, d′ is uniformly random from Z2; in the
second, it is uniformly random from Z4; and in the third, it is uniformly random from Z8. Hence,
the success probability of our RSP protocol is also 1

64 .
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Now, we will investigate the evolution of the state held by the prover, starting with |+⟩. The
first iteration implements the mapping

1√
2

(|0⟩+ |1⟩) 7→ 1√
2

(|0⟩+ (−1)b1ωθ1
2 |1⟩),

whereas the second implements

1√
2

(|0⟩+ (−1)b1ωθ1
2 |1⟩) 7→

1√
2

(|0⟩+ (−1)b1⊕b2ωθ1
2 ω

θ2
4 |1⟩),

and finally, from the last iteration, we obtain

1√
2

(|0⟩+ (−1)b1⊕b2ωθ1
2 ω

θ2
4 |1⟩) 7→

1√
2

(|0⟩+ (−1)b1⊕b2⊕b3ωθ1
2 ω

θ2
4 ω

θ3
8 |1⟩)

= 1√
2

(|0⟩+ (−1)b1⊕b2⊕b3ω4θ1+2θ2+θ3
8 |1⟩)

= 1√
2

(|0⟩+ (−1)bωθ
8 |1⟩),

as desired.

3.3.2 Blindness

To show blindness, we need to invoke the well-known quantum Goldreich-Levin theorem [AC01],
specifically the version with auxiliary input that was proven in [CLLZ21].

Theorem 3.4 (Quantum Goldreich-Levin [CLLZ21]). If there exists a quantum algorithm, that
given a random r and an auxiliary quantum input ρx, it computes r · x with probability at least
1/2 + ε; then there exists a quantum algorithm that takes ρx and extracts x with probability 4ε2.

Before proving blindness, we will first show a simple technical lemma.

Lemma 3.5. Let n ≥ 2 be an integer and m := ⌊log2(n)⌋. Then, for all 0 ≤ i ≤ m, there exist
functions gi : {0, 1}n → {0, 1} such that for all bit strings (a1, . . . , an) ∈ {0, 1}n of length n, the
following holds:

a1 + . . .+ an = 2m · gm(a1, . . . , an) + . . .+ 2 · g1(a1, . . . , an) + g0(a1, . . . , an). (3.1)

Proof. The proof follows directly from considering the integer a1 + . . . + an in its binary
representation. Since this integer is at most n, we need m+ 1 bits to represent it in the binary
system. We now define gi(a1, . . . , an) as the bit corresponding to the (i+ 1)-th position (from
the right).

By considering Eq. (3.1) modulo 2, we see that

g0(a1, . . . , an) = g0(a1, . . . , an) mod 2 = (a1 + . . .+ an) mod 2 = a1 ⊕ . . .⊕ an.

Thus, we get

a1 + . . .+ an = 2m · gm(a1, . . . , an) + . . .+ 2 · g1(a1, . . . , an) + (a1 ⊕ . . .⊕ an).

Finally, we prove that our protocol ensures blindness.

Theorem 3.6. If (Gen, Invert) is a TCF, then the RSP protocol described in Section 3.3 is blind.
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Proof. We will use Lemma 3.5 for n = 2 and n = 3, where in both cases m = 1. We will denote
the function for n = 2 by g1 and the function for n = 3 by g′1 for better distinction (both
functions can, in fact, be represented by a mapping that outputs the most significant bit of the
sum of the inputs, represented as a two-bit binary number). The following equations are now
true over Z:

4 · θ1 + 2 · θ2 + θ3 = 4 · (z1,0 + z1,1) + 2 · (z2,0 + z2,1) + (z3,0 + z3,1)
= 4 · (z1,0 + z1,1) + 2 · (z2,0 + z2,1 + z̃3) + (z3,0 ⊕ z3,1)
= 4 · (z1,0 + z1,1 + z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1),

where
z̃3 := g1(z3,0, z3,1) and z̃2 := g′1(z2,0, z2,1, z̃3).

Now, we have

θ = 4 · θ1 + 2 · θ2 + θ3 mod 8
= 4 · (z1,0 + z1,1 + z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1) mod 8
= 4 · (z1,0 ⊕ z1,1 ⊕ z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1) mod 8
= 4 · (z1,0 ⊕ z1,1 ⊕ z̃2) + 2 · (z2,0 ⊕ z2,1 ⊕ z̃3) + (z3,0 ⊕ z3,1)
=: 4 · θ′1 + 2 · θ′2 + θ′3.

We will now gradually change the way we compute θ in the blindness experiments us-
ing a hybrid argument. First, we claim that the following distributions are computationally
indistinguishable:

θ = 4θ′1 + 2θ′2 + θ′3 ≈c 4θ∗1 + 2θ′2 + θ′3

where θ∗1 ←$ {0, 1}. Recall that

θ′1 = z1,0 ⊕ z1,1 ⊕ z̃2 = x1,0 · r1,0 ⊕ x1,1 · r1,1 ⊕ z̃2.

Since z̃2 is independent from

x1,0 · r1,0 ⊕ x1,1 · r1,1 = (x1,0 ∥ x1,1) · (r1,0 ∥ r1,1),

it suffices to show that the latter is computationally indistinguishable from uniform. This follows
by Theorem 3.4 (Quantum Goldreich-Levin), as otherwise there would exist an efficient extractor
for (x1,0 ∥ x1,1), contradicting the claw-freeness of the TCF. Repeating the same argument, we
can conclude that

θ ≈c 4θ∗1 + 2θ′2 + θ′3 ≈c 4θ∗1 + 2θ∗2 + θ′3 ≈c 4θ∗1 + 2θ∗2 + θ∗3,

where θ∗1, θ∗2, θ∗3 ←$ {0, 1}. This shows that θ is computationally indistinguishable from a uni-
formly random element in Z8 and completes our proof.

Our blind RSP protocol succeeds with a constant probability of 1
64 . As a standard method,

one can boost the probability to be exponentially close to 1 by simply repeating the protocol
sequentially up to λ times until the first success, boosting the success probability to 1−

(
63
64

)
λ.

Security is obviously still guaranteed. Therefore, we can assume from now on that our blind
RSP protocol succeeds with probability 1− negl(λ).
Remark 3.7. Note that we can use the same strategy to remotely construct states in Zb |+θ⟩
for θ ←$

{
k · π/2m−1 | k ∈ Z2m

}
for any m ∈ O(1). Simply follow the same steps in the main

protocol, beginning with n = 2 and ending with n = 2m. The blindness proof remains nearly
identical. The procedure requires replacing the sums with their XORs m times, allowing the
quantum Goldreich-Levin theorem to be applied again.
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Chapter 4

Recap of Measurement-Based
Quantum Computation

In this chapter, we recap the measurement-based quantum computation (MBQC) model, originally
introduced by Robert Raussendorf and Hans J. Briegel in [RB01]. We start with an introduction
to the MBQC model, gradually developing the theory by reproving its key concepts step by
step. Additionally, we reprove the universality of the brickwork state, implying that arbitrary
quantum computations can be performed within the MBQC model using brickwork states, as
shown by Broadbent, Fitzsimons, and Kashefi [BFK09].

In the context of this thesis, this chapter presents the theoretical model used to construct
our compiler. Similar to how the well-known universal blind quantum computation (UBQC)
protocol in [BFK09] is described within the MBQC model, our compiler—whose core component
is presented in Section 5.2—is also based on the MBQC model. While it may be useful to
examine the UBQC protocol more closely, it is not necessary, as we will generalize the UBQC
protocol in Section 5.1 before making it the central object of our compiler in Section 5.2.

4.1 Introduction to Measurement-Based Quantum Computation
The measurement-based quantum computation (MBQC) model is an equivalent way to implement
quantum computations, alongside other approaches like the well-known quantum circuit model
or adiabatic quantum computation model. It was originally introduced by Robert Raussendorf
and Hans J. Briegel in [RB01], and offers a distinct framework for quantum computing.

In the quantum circuit model, which operates similarly to the classical circuit model used in
nearly all commercial laptops, computations usually begin with qubits initialized in the |0⟩ state.
A series of unitary transformations is then applied to subsets of these qubits, until the desired
quantum state is achieved. Finally, selected qubits are measured to yield classical outcomes,
which either represent the result or can be used in further computations.

In MBQC, however, the process is somewhat different. Loosely speaking, one begins by
preparing a highly entangled generic resource state, which is essentially independent of the
specific computation to be performed. Then, individual qubits are measured successively and
adaptively in an appropriate basis, leading the remaining qubits into the desired quantum state
by the end. The MBQC workflow can thus be divided into the following two main procedures:

1. (State Preparation) In the first step, qubits in the quantum state |+⟩ are entangled in a
specific way using the CZ operator to construct the resource state.

2. (Computation) In the second step, one-qubit measurements are performed on almost all
qubits in a fixed order and in a specific basis, which depends on the previous measurement
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outcomes. These measurements can be viewed as implementing a unitary operation such
that the remaining qubits are in the desired quantum state.

Thus, the resource state and one-qubit measurements are all that are needed to perform arbitrary
quantum computations.

One attractive property of this model is that, once the resource state is prepared, only
single-qubit measurements are needed (i.e., no non-measurement gates, as in the quantum circuit
model). Another feature is that it provides a natural formalism for separating a quantum
algorithm into ‘classical parts’ and ‘quantum parts’. In contrast, in the quantum circuit model,
every computational step is regarded as quantum. This insight also led to the first protocol
for universal blind quantum computation (UBQC), proposed in the MBQC model, in which the
client requires no quantum memory [BFK09].

In the following, we will gradually develop the theory by systematically reviewing its key
concepts step by step. To do this, we will closely follow the works of [Nie06, Joz05, MDF17]. We
strongly recommend that the reader refer to Chapter 2, particularly Section 2.1, for terminology
and notational conventions.

We begin with the one-bit teleportation scheme to understand the mechanics of the MBQC
model.

Lemma 4.1 (One-Bit Teleportation [MDF17, Figure 1]). Let |ψ⟩ ∈ C2 be an arbitrary one-qubit
quantum state, and define

|Ψ⟩ := (H ⊗ I) CZ(|ψ⟩ ⊗ |+⟩).
If the binary observable Z is measured on the first qubit of |Ψ⟩ with outcome m ∈ {0, 1}, the
quantum state of the second qubit collapses to XmH |ψ⟩. This can be expressed using the following
circuit:

|ψ⟩ H
Z

m

|+⟩ XmH |ψ⟩

Proof. The following identity

(⟨m|H ⊗ I) CZ (I ⊗ |+⟩) = 1√
2
XmH (4.1)

directly implies our lemma by applying |ψ⟩ to both sides from the right. Proving this identity is
straightforward by evaluating both sides on the basis vector |b⟩ for b ∈ {0, 1}.
On the right-hand side, we get

1√
2
XmH |b⟩ = 1√

2
Xm 1√

2

(
|0⟩+ (−1)b |1⟩

)
= 1

2
(
|m⟩+ (−1)b |1⊕m⟩

)
.

On the left-hand side, we get

(⟨m|H ⊗ I) CZ (|b⟩ ⊗ |+⟩) = (⟨m|H ⊗ I)
(
|b⟩ ⊗ Zb |+⟩

)
= (⟨m| ⊗ I)

( 1√
2

(
|0⟩+ (−1)b |1⟩

)
⊗ Zb |+⟩

)
= (⟨m| ⊗ I)

(
1√
2
|0⟩ ⊗ Zb |+⟩+ (−1)b

√
2
|1⟩ ⊗ Zb |+⟩

)

= 1
2
(
|m⟩+ (−1)b |1⊕m⟩

)
,

where the last equality can be verified by checking the cases m = 0 and m = 1 separately.
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We have expressed the lemma obviously in terms of a quantum circuit. Let us take a closer
look at how the lemma can be understood through the lenses of measurement-based quantum
computation. Imagine the following scenario: We are given a qubit in the quantum state |ψ⟩,
and we want to apply the Hadamard transformation H to it. In the quantum circuit model,
we would simply implement the quantum gate H to achieve this. However, in the language of
MBQC, we instead create the quantum state CZ (|ψ⟩ ⊗ |+⟩), which serves conceptually as the
resource state. For now, consider this state as provided by a third party, so that no quantum
gate needs to be applied by us directly. Next, we interpret the Hadamard gate followed by a
computational basis measurement as a Hadamard measurement, so that no gate has to be applied.
This yields an outcome m ∈ {0, 1}. Consequently, our remaining qubit is in the quantum state
XmH |ψ⟩, which is nearly the desired quantum state H |ψ⟩, differing only by a local Pauli X
operator. The presence of the local Pauli X operator, determined by the measurement outcome
m, does not cause any problem. In a quantum computation, we would ultimately measure
H |ψ⟩ in the computational basis, and the presence of the local Pauli X operator only requires a
simple reinterpretation of the output result m′ as m′ ⊕m. This reinterpretation yields the same
probability distribution as if we had measured H |ψ⟩ directly in the computational basis. Thus,
we successfully implemented the Hadamard transformation H (up to a local Pauli operator)
without using any quantum gates, relying solely on single-qubit measurements, assuming the
resource state has been provided to us. We will mention in Section 4.2 how a specific resource
state can actually be prepared without using quantum gates. All in all, this way of thinking
embodies the spirit of the MBQC framework.

As a direct consequence of Lemma 4.1, we obtain the following result, referred to as the
generalized one-bit teleportation scheme, which serves as the foundation for all further observations
in the MBQC model.

Corollary 4.2 (Generalized One-Bit Teleportation [MDF17, Figure 2]). Let |ψ⟩ ∈ C2 be an
arbitrary one-qubit quantum state, and define

|Ψ⟩ := (HRz(θ)⊗ I) CZ(|ψ⟩ ⊗ |+⟩)

for any θ ∈ R. If the binary observable Z is measured on the first qubit of |Ψ⟩ with outcome
m ∈ {0, 1}, the quantum state of the second qubit collapses to XmHRz(θ) |ψ⟩. This can be
expressed using the following circuit:

|ψ⟩ Rz(θ) H
Z

m

|+⟩ XmHRz(θ) |ψ⟩
(4.2)

Proof. This follows directly from Lemma 4.1 applied to the one-qubit quantum state Rz(θ) |ψ⟩,
along with the fact that Rz(θ)⊗ I commutes with CZ, as both operators are diagonal matrices
in the standard basis.

Note that the measurement outcome is always uniformly random for any state |ψ⟩, as can be
directly observed from Eq. (4.1).

Similarly to how we argued in the interpretation of the previous lemma, the z-rotation and
Hadamard gate followed by measuring the binary observable Z can be considered as measuring
another binary observable, which we will describe now. First, in the quantum circuit in (4.2),
we can think of Rz(θ) as P (θ), since these operators are the same up to a global phase. Now,
we define the following basis for C2:

|+θ⟩ := 1√
2

(
|0⟩+ eiθ |1⟩

)
= P (θ)H |0⟩
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and
|−θ⟩ := 1√

2

(
|0⟩ − eiθ |1⟩

)
= P (θ)H |1⟩

for any θ ∈ R, which, as a side note, lie in the (X,Y )-plane of the Bloch sphere. The corresponding
binary observable is given by

|+θ⟩⟨+θ| − |−θ⟩⟨−θ| =
(

0 e−iθ

eiθ 0

)
= cos(θ)X + sin(θ)Y.

In general, applying a unitary U followed by a computational basis measurement is equivalent
to performing a single-qubit measurement in the basis

{
U † |0⟩ , U † |1⟩

}
. Using the notation we

defined above, we can now say that the unitary H ·Rz(θ) followed by measuring Z gives arise to
the same behavior as measuring cos(−θ)X + sin(−θ)Y (since we discard the measured qubit and
do not care about its post-measurement state). We will henceforth say that we are measuring in
the θ-basis if we measure the binary observable cos(−θ)X + sin(−θ)Y . The quantum circuit in
(4.2) is now rewritten as

|ψ⟩
θ

m

|+⟩ XmHRz(θ) |ψ⟩
(4.3)

where the θ in the lower right corner of the measurement gate indicates that we are measuring
the binary observable cos(−θ)X + sin(−θ)Y .

Next, we aim to make the visualization of the quantum circuit in (4.3) even more compact
and more ‘MBQC-like’ with the graph-like picture in Fig. 4.1.

θ

m

Figure 4.1: The blue circle represents a qubit in an arbitrary state |ψ⟩, while the white circle
always represents a qubit in the |+⟩ state. The edge represents the CZ operator applied to both
connected qubits (note that the CZ operator is symmetric, meaning it does not matter which
qubit is the control and which is the target). Finally, the θ indicates that we are measuring in
the θ-basis, and m ∈ {0, 1} represents the measurement outcome.

Equipped with this new visualization, one typically speaks of an information flow from left
to right in the MBQC language.

Before moving on, we want to mention that a similar result to Corollary 4.2 holds for an n-
qubit quantum state. Assume that we are working with an n-qubit quantum state |ψ⟩ ∈ (C2)⊗n,
rather than a one-qubit quantum state. In the quantum circuit (4.2), we use the i-th qubit of |ψ⟩
for entangling and measuring. Finally, after measuring, we replace the i-th qubit of |ψ⟩ with the
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unmeasured qubit in the quantum circuit. See the quantum circuit in (4.4) for a visualization.

...

...

|ψ⟩ θ
m

|+⟩
(4.4)

Then, the quantum state of the n qubits at the end is given by(
I⊗(i−1) ⊗XmHRz(θ)⊗ I⊗(n−i)

)
|ψ⟩ .

This follows directly from Eq. (4.1) in the proof of Lemma 4.1, as we only have to add identity
operators to the left and right of the equation.

To conclude this section, we demonstrate how to unleash the full potential of MBQC by
considering a larger number of qubits, which also provides a clearer understanding of the more
complex MBQC processes that we will encounter later. Specifically, we will show how to
implement an arbitrary one-qubit unitary (up to a global phase). We rely on the well-known fact
that any one-qubit unitary U can be expressed in its so-called Euler representation, meaning it
can be decomposed as

U = eiδRx(γ)Rz(β)Rx(α),

where α, β, γ, and δ are real numbers.
To implement this unitary transformation in the MBQC model, we use a sequence of

measurements performed from left to right on a linear graph state consisting of five qubits, as
illustrated in Fig. 4.2.

0

m1

α

m2

β

m3

γ

m4

Figure 4.2: The same convention in Fig. 4.1 applies here as well.

Note that the CZ operators commute with each other, as all of these operators are diagonal
matrices in the standard basis. Therefore, we do not need to specify the order in which the
operators are applied. By applying Corollary 4.2 four times in this scenario—where the output
qubit of each step serves as the input qubit for the next—the quantum state |ϕ⟩ of the final
remaining qubit is

|ϕ⟩ = Xm4HRz(γ)Xm3HRz(β)Xm2HRz(α)Xm1HRz(0) |ψ⟩ . (4.5)

This result follows directly, as we can express the measurement-based quantum computation in
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terms of an equivalent quantum circuit shown in (4.6).

|ψ⟩
0

m1

|+⟩
α

m2

|+⟩
β

m3

|+⟩
γ

m4

|+⟩ |ϕ⟩

(4.6)

This quantum circuit can equivalently be rewritten as (4.7), since the CZ operations can be
delayed to occur after the measurement of the preceding qubit.

|ψ⟩
0

m1

|+⟩
α

m2

|+⟩
β

m3

|+⟩
γ

m4

|+⟩ |ϕ⟩

(4.7)

This observation shows the equality in Eq. (4.5). To simplify that expression, we use the following
‘propagation’ relations, which are easily verified:

HX = ZH

HRx(θ) = Rz(θ)H
Rz(θ)X = XRz(−θ)

Z ≡ Rz(π), (4.8)

where the last congruence denotes equality up to a global phase. For quantum states, we will
nevertheless use an equality sign, even when the equality holds only up to a global phase (as we
already did in the previous lemma and corollary). By repeatedly applying these identities to
Eq. (4.5), we finally obtain

|ϕ⟩ = Xm4Zm3 ·Rx((−1)m3γ +m2π) ·Rz((−1)m2β +m1π) ·Rx((−1)m1α) |ψ⟩ . (4.9)

If all measurement outcomes were 0, i.e., mi = 0 for 1 ≤ i ≤ 4, then this would exactly implement
the intended unitary U . However, this is not always the case (the probability of this occurrence is
actually 1

24 ). This presents us a new challenge in handling the local Pauli X operators that arise
in the middle of the computation. Since these local Pauli operators are an undesired byproduct
of implementing the unitary, they are often called byproducts in the MBQC framework. We will
now discuss how to handle these byproducts in this specific case, giving a sneak peek of a general
procedure for another class of resource states in Section 4.2.2. The solution to this problem is
to select subsequent measurement angles based on the outcomes of previous measurements. In
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this way, most of the byproducts will disappear. Specifically, one proceeds as follows: After the
first measurement, the second measurement angle is chosen as α′ := (−1)m1α. After the second
measurement, the third angle is set to β′ := (−1)m2β +m1π, and finally, γ′ := (−1)m3γ +m2π
is used for the last angle. The updated angles are illustrated in Fig. 4.3.

0

m1

(−1)m1α

m2

(−1)m2β +m1π

m3

(−1)m3γ +m2π

m4

Figure 4.3: Adaptive measurements: taking previous measurement outcomes into account.

Note that the equality in Eq. (4.9) still holds; we only need to replace α, etc., with their
adjusted values (i.e., α′, etc.). Plugging these into the equation, we find:

|ϕ⟩ = Xm4Zm3 ·Rx((−1)m3γ′ +m2π) ·Rz((−1)m2β′ +m1π) ·Rx((−1)m1α′) |ψ⟩
= Xm4Zm3 ·Rx(γ) ·Rz(β) ·Rx(α) |ψ⟩
= Xm4Zm3 · U |ψ⟩ . (4.10)

This example shows that measurements must be carried out adaptively to maintain control over
the executed computation. Moreover, we have shown that we can successfully implement an
arbitrary one-qubit unitary U in the MBQC model, up to local Pauli operators. We have already
seen how to handle the Pauli X by reinterpreting the measurement outcome. To handle the
Pauli Z, we don’t need to do anything, as it does not affect the probability distribution and can
therefore be ignored.

4.2 Universality
In this section, we will show that arbitrary quantum computations can be performed within
the MBQC model using brickwork states, thereby establishing the universality of brickwork
states [BFK09]. Brickwork states are a specific type of resource states and will be defined in
Section 4.2.1. The proof in Section 4.2.3 provides a concrete implementation of this MBQC
procedure to realize any unitary U to arbitrary precision.

The first resource state proven to be universal appeared in [RB01], referred to as the 2-
dimensional cluster state. Loosely speaking, a 2-dimensional cluster state consists of qubits in
the |+⟩ state, arranged in a lattice and entangled using the CZ operator. See Fig. 4.4 for an
example.

Figure 4.4: The cluster state of dimension 3× 4.

Strictly speaking, we should refer to a family of 2-dimensional cluster states, as their size can
vary based on the number of rows and columns they have. From an implementation perspective,
cluster states can be efficiently created in systems with quantum Ising-type interactions (at very
low temperatures) between two-state particles arranged in a lattice configuration [RB01].
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Brickwork states were introduced because they have the advantage of being universal
using only measurements in the (X,Y )-plane of the Bloch sphere, enabling the construction
of blind delegated quantum computing (blind DQC) protocols [BFK09]. The work in [RB01]
established the universality of cluster states for measurements in the (X,Y )-plane combined
with Z-measurements. Later, it was shown in [MDF17] that Z-measurements are not necessary
for cluster states to achieve universality. This result implicitly showed that any blind DQC
protocol based on MBQC can also use cluster states as a resource. Therefore, cluster states
could theoretically be used in this work as well to achieve the same results. However, we choose
to proceed with the brickwork state introduced in [BFK09], as our work builds upon it.

4.2.1 Brickwork State

We will now define a generic resource state, which we refer to as the brickwork state.

Definition 4.3 (Brickwork State [BFK09, Definition 1]). A brickwork state Gn×m, where m ≡ 5
mod 8, is an entangled state of n×m qubits constructed as follows:

1. Prepare all qubits in state |+⟩ and assign to each qubit an index (i, j), i being a row (i ∈ [n])
and j being a column (j ∈ [m]).

2. For each row, apply the operator CZ on qubits (i, j) and (i, j + 1) where j ∈ [m− 1].

3. For each column j ≡ 3 mod 8 and each odd row i, apply the operator CZ on qubits (i, j)
and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

4. For each column j ≡ 7 mod 8 and each even row i, apply the operator CZ on qubits (i, j)
and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

We provide an illustration of the brickwork state Gn×m in Fig. 4.5.

· · ·

· · ·

· · ·

· · ·

· · ·
...

...

· · ·

· · ·

Figure 4.5: The brickwork state Gn×m.

Moreover, we refer to the specific brickwork state G2×5 as the unit cell, illustrated in Fig. 4.6.

Figure 4.6: The unit cell.
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The special role of the unit cell will become evident in the proof of universality in Section 4.2.3.
As a teaser, the general brickwork state can (to some extent) be subdivided into unit cells, which
explains the restriction m ≡ 5 mod 8.

As an important side note, while the original brickwork state is defined for specific values of
m, we can, of course, define it for all m. In fact, we will later drop this restriction to simplify
the proof of a specific result by using induction on m. Furthermore, we will see us often in the
scenario where we have an n′-qubit state |ψ⟩ ∈ (C2)⊗n′ and use n ≤ n′ of those qubits as the
first layer in the brickwork state instead of qubits in the |+⟩ state. In other words, we allow the
n qubits in the first layer to be in an arbitrary quantum state, which may even be entangled
with the environment (i.e., being part of a larger quantum state).

4.2.2 Measurement Pattern

Now that we have our resource state in hand, we need to describe how to measure the qubits
within it. We begin by defining what a measurement pattern is.

Definition 4.4 (Measurement Pattern). A measurement pattern for Gn×m consists of a series
of angles {ϕx,y}x∈[n],y∈[m−1], where ϕx,y ∈ R, specifying that qubit (x, y) should be measured in
the ϕx,y-basis. The measurements are performed in a specific order, starting with the leftmost
column and proceeding from top to bottom. Specifically, we begin by measuring the qubit at
position (1, 1), then (2, 1), and so forth up to (n, 1). After completing the first column, the
process continues to the next column, following the same procedure, until all but the final column
have been measured. The qubits in the last column are referred to as output qubits. We will
refer to this overall measurement process as executing the measurement pattern.

Assume we are executing a measurement pattern {ϕx,y}x∈[n],y∈[m−1] on Gn×m. Using Corol-
lary 4.2, we can describe the unitary evolution of this computation, as illustrated in the example
from Fig. 4.2. Each row of physical qubits in the brickwork state can be viewed as representing
one logical qubit, analogous to the quantum circuit model. For now, assume that every measure-
ment outcome is 0 during the execution of the measurement pattern. Under this assumption, no
local Pauli operators appear as byproducts during the computation, making the computation
deterministic. This means by repeatedly executing the same measurement pattern with all
outcomes assumed to be 0, we always implement the same unitary V . Ideally, we would like this
scenario to always occur to gain more control over the implemented unitary. However, as we have
seen, measurement outcomes are uniformly random, leading to the appearance of local Pauli
operators during the computation. These byproducts may result in a quantum computation
yielding a unitary completely different from V . This phenomenon was previously observed in
Fig. 4.2, where the implemented unitary was explicitly written on the right-hand side of Eq. (4.5).
Specifically, let

V := HRz(γ)HRz(β)HRz(α)H
= Rx(γ)Rz(β)Rx(α)

represent the unitary that arises when all measurement outcomes are 0. It is obvious that if not
all measurement outcomes are 0, the resulting unitary may differ from V . Thus, executing a
measurement pattern with the specified angles may result in the implementation of an unintended
unitary.

We solved this issue, by adaptively modifying the measurement angles during the computation,
as demonstrated in Fig. 4.3, ensuring that the implemented unitary at the end is Xm4Zm3 · V
(see Eq. (4.10)), which corresponds to our desired unitary V , up to local Pauli operators. While
it is impossible to eliminate local Pauli operators entirely, this approach allows us to achieve a
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satisfactory form, where the desired unitary is followed by local Pauli operators. As previously
argued, these local Pauli operators do not interfere with the computation when the state is
measured in the computational basis. Therefore, the implementation of the desired unitary V
followed by local Pauli operators is effectively equivalent to implementing V directly.

Our ultimate goal now is to describe a procedure for updating the angles in the measurement
pattern during execution, ensuring that we implement the unitary corresponding to the case
where all measurement outcomes are 0, thereby enabling deterministic computation (up to local
Pauli operators in the end). We now provide a formula for the updated measurement angle ϕ′x,y

at position (x, y), which depends on ϕx,y and prior measurement outcomes.
A general theory for updating measurement angles during the execution of a measurement

pattern for arbitrary resource states that satisfy specific properties was described by Danos
and Kashefi in [DK06]. However, we will not delve deeply into this work. Instead, we use its
results, tailored to our specific purposes, which suffice for our analysis and still ensure a clear
understanding.

First, define f : [n] × [m − 1] → [n] × [m] by f(x, y) = (x, y + 1). In the context of the
brickwork state, this function maps a qubit to the qubit directly to its right. This visualization
is particularly helpful when calculating the updated measurement angle. Next, define the
X-dependencies of the qubit at position (x, y) by the set

Dx,y := f−1(x, y) =
{
∅ if y = 1
{(x, y − 1)} if y > 1

∀x ∈ [n], y ∈ [m]

and the Z-dependencies by

D′x,y := {(a, b) | b < y, (x, y) ∈ N(f(a, b))} ∀x ∈ [n], y ∈ [m],

where N(x, y) denotes the set of neighbors of (x, y) in the brickwork state, i.e., all vertices
connected to (x, y). We measure the brickwork state in the order described earlier (from left to
right and top to bottom). Denote the measurement outcome at position (x, y) by sx,y. We define

sX
x,y :=

⊕
i∈Dx,y

si =
{

0 if y = 1
sx,y−1 if y > 1

∀x ∈ [n], y ∈ [m]

and
sZ

x,y :=
⊕

i∈D′
x,y

si ∀x ∈ [n], y ∈ [m].

Finally, we define the modified measurement angles as

ϕ′x,y := (−1)sX
x,y · ϕx,y + sZ

x,y · π. (4.11)

Thus, ϕ′x,y depends on the outcomes of at most two previous layers.
Lastly, we must prove that these updated measurement angles indeed work as intended.

Specifically, by executing the updated measurement pattern {ϕ′x,y}x∈[n],y∈[m−1], we implement the
same unitary operation as if we had executed the original measurement pattern {ϕx,y}x∈[n],y∈[m−1],
with the measurement outcomes always being 0 (up to local Pauli operators at the end). To
prove this, we will consider the brickwork state for arbitrary dimensions m, without restricting
it to m ≡ 5 mod 8, as discussed earlier in Section 4.2.1.

Before proceeding with the proof, we require a small technical lemma.

Lemma 4.5. For all a, b, c, d ∈ {0, 1}, the following equality holds, up to a global phase:

CZ ·
(
XaZb ⊗XcZd

)
=
(
XaZb⊕c ⊗XcZd⊕a

)
· CZ .
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Proof. This result follows directly from the two identities:

CZ ·(X ⊗ I) = (X ⊗ Z) · CZ

and
CZ ·(I ⊗X) = (Z ⊗X) · CZ,

as well as the fact that CZ commutes with Z ⊗ I and I ⊗ Z.

We are now prepared to prove the following proposition. It is important to note that
throughout this discussion, the equality sign denotes equality up to a global phase, which suffices
for our purposes. Furthermore, when we state that two unitaries are the same, we mean that
this equality is also up to a global phase.

Proposition 4.6. Let Gn×m be a brickwork state, where the n qubits in the first layer are
in an arbitrary n-qubit quantum state |ψ⟩ ∈ (C2)⊗n. Additionally, let {ϕx,y}x∈[n],y∈[m−1] be a
measurement pattern on Gn×m, and let U be the unitary corresponding to the quantum computation
when the measurement pattern is executed with all measurement outcomes being 0. Now, let
{ϕ′x,y}x∈[n],y∈[m−1] denote the updated measurement pattern, as described in Eq. (4.11). When the
updated measurement pattern is executed, the unitary corresponding to this quantum computation
is given by (

XsX
1,mZsZ

1,m ⊗ . . .⊗XsX
n,mZsZ

n,m

)
· U.

The quantum state at the end of the execution is then given by(
XsX

1,mZsZ
1,m ⊗ . . .⊗XsX

n,mZsZ
n,m

)
U |ψ⟩ .

Proof. We will prove this by induction on m.
For m = 1, the statement is trivially true, as we have the empty measurement pattern, which

implements the identity, i.e., U = I. Moreover, sX
i,m = sZ

i,m = 0 for all i.
For m = 2, the statement is also easily seen to be true, as the unitary corresponding to the

execution of the updated measurement pattern equals

Xs1,1HRz(ϕ′1,1)⊗ . . .⊗Xsn,1HRz(ϕ′n,1)

= (Xs1,1 ⊗ . . .⊗Xsn,1) ·
(
HRz(ϕ′1,1)⊗ . . .⊗HRz(ϕ′n,1)

)
= (Xs1,1 ⊗ . . .⊗Xsn,1) · (HRz(ϕ1,1)⊗ . . .⊗HRz(ϕn,1))
= (Xs1,1 ⊗ . . .⊗Xsn,1) · U

=
(
XsX

1,2ZsZ
1,2 ⊗ . . .⊗XsX

n,2ZsZ
n,2
)
· U.

To show that the proposition holds for arbitrary m, we assume that it is true for a specific
m ≥ 2 and show that this implies it is also true for m+1. For this, consider a measurement pattern
{ϕx,y}x∈[n],y∈[m] on Gn×(m+1) that implements U when all measurement outcomes are 0. Let U ′
denote the unitary obtained by measuring the ‘sliced measurement pattern’ {ϕx,y}x∈[n],y∈[m−1],
with all measurement outcomes being 0.

We now provide a formula for the unitary implemented when executing {ϕ′x,y}x∈[n],y∈[m] and
justify it afterward:(

CZa1
1,2 ·CZa2

2,3 · · ·CZan−1
n−1,n

)
·
(
Xs1,mHRz(ϕ′1,m)⊗ . . .⊗Xsn,mHRz(ϕ′n,m)

)
·
(
XsX

1,mZsZ
1,m ⊗ . . .⊗XsX

n,mZsZ
n,m

)
· U ′, (4.12)
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for specific values of a1, . . . , an−1 ∈ {0, 1} depending on m + 1. Note that by executing the
updated measurement pattern {ϕ′x,y}x∈[n],y∈[m], we are simultaneously executing the ‘sliced
updated measurement pattern’ {ϕ′x,y}x∈[n],y∈[m−1], as the formulas for updating the angles
remain the same in both cases. Hence, we can apply the induction hypothesis, justifying the
second line in (4.12). However, we are not done yet, as we still need to measure the qubits in
the m-th layer, which yields the second product in the first line in (4.12). Depending on the
value of m+ 1, we have to consider the vertical CZ operators appearing in the brickwork state in
Fig. 4.5, which are part of the quantum computation. There are three possible cases depending
on the value of m+ 1:

1. Case m+ 1 ≡ 3, 5 mod 8: Here, ai = 1 if and only if i is odd.

2. Case m+ 1 ≡ 7, 9 mod 8: Here, ai = 1 if and only if i is even.

3. All other cases: Here, ai = 0 for all i.

So far, we have justified that our unitary is indeed given by the formula in (4.12). What remains
is to show that this unitary equals(

XsX
1,m+1ZsZ

1,m+1 ⊗ . . .⊗XsX
n,m+1ZsZ

n,m+1
)
· U.

Let us first consider the third case where ai = 0 for all i. We compute:(
Xs1,mHRz(ϕ′1,m)⊗ . . .⊗Xsn,mHRz(ϕ′n,m)

)
·
(
XsX

1,mZsZ
1,m ⊗ . . .⊗XsX

n,mZsZ
n,m

)
· U ′

=
(
Xs1,mHRz(ϕ′1,m)ZsZ

1,mXsX
1,m ⊗ . . .⊗Xsn,mHRz(ϕ′n,m)ZsZ

n,mXsX
n,m

)
· U ′

=
(
Xs1,mHXsX

1,mRz(ϕ1,m)⊗ . . .⊗Xsn,mHXsX
n,mRz(ϕn,m)

)
· U ′

=
(
Xs1,mZsX

1,mHRz(ϕ1,m)⊗ . . .⊗Xsn,mZsX
n,mHRz(ϕn,m)

)
· U ′

=
(
Xs1,mZsX

1,m ⊗ . . .⊗Xsn,mZsX
n,m

)
· U ′′

=
(
Xs1,mZsX

1,m ⊗ . . .⊗Xsn,mZsX
n,m

)
· U

=
(
XsX

1,m+1ZsZ
1,m+1 ⊗ . . .⊗XsX

n,m+1ZsZ
n,m+1

)
· U,

where in the first equation, XZ = −ZX was used; in the second and third equations, definitions
of updated angles were expanded, and the identities in (4.8) were applied multiple times; in the
fourth equation, the unitary U ′′ was introduced by merging the HRz(ϕi,m) with U ′; in the fifth
equation, it was observed that U ′′ = U , as no CZ operators appear in the (m+1)-th layer; finally,
in the last equation, it was observed that the exponents of the Pauli operators are identical.

Let us move on to the first case, i.e., ai = 1 for odd i. We will perform another case distinction
based on the parity of n. For now, let us assume that n is even. Following the same approach as
above, we reach the point where our unitary equals(

CZa1
1,2 ·CZa2

2,3 · · ·CZan−1
n−1,n

)
·
(
Xs1,mZsX

1,m ⊗ . . .⊗Xsn,mZsX
n,m

)
· U ′′.

What remains is to propagate the local Pauli operators through the CZ operators using Lemma 4.5.
To this end, let i be an odd index. Since i ≤ n is odd and n is even, we still have i+ 1 ≤ n. We
then consider the following chain of equations:

CZi,i+1 ·
(
Xsi,mZsX

i,m ⊗Xsi+1,mZsX
i+1,m

)
=
(
Xsi,mZsX

i,m⊕si+1,m ⊗Xsi+1,mZsX
i+1,m⊕si,m

)
· CZi,i+1
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=
(
XsX

i,m+1ZsZ
i,m+1 ⊗XsX

i+1,m+1ZsZ
i+1,m+1

)
· CZi,i+1,

where the first equality follows from Lemma 4.5, and the second by observing that the exponents
of the Pauli operators are identical. Putting this together for all i, we obtain the unitary(

XsX
1,m+1ZsZ

1,m+1 ⊗ . . .⊗XsX
n,m+1ZsZ

n,m+1
)
·
(
CZa1

1,2 ·CZa2
2,3 · · ·CZan−1

n−1,n

)
· U ′′

=
(
XsX

1,m+1ZsZ
1,m+1 ⊗ . . .⊗XsX

n,m+1ZsZ
n,m+1

)
· U,

where the equation holds because U ′′ represents the unitary before incorporating the CZ operators
that appear in the brickwork state in the (m+ 1)-th layer, and together they form U .

The same argument clearly applies to the case where n is odd. In this case, the local Pauli
operator Xsn,mZsX

n,m can be propagated to the left without passing through a CZ. All other
local Pauli operators are handled as in the case where n is even.

Finally, the third case, where ai = 1 for even i, follows the same reasoning. We omit the
details, as all the necessary insights to understand the argument have already been provided.

The proposition can be further generalized by allowing the n qubits in the first layer to be
part of a larger quantum state, similar to the argument illustrated with the circuit in (4.4). For
concreteness, let |ψ⟩ ∈ (C2)⊗n′ be an n′-qubit quantum state with n′ ≥ n, and use the first n
qubits of |ψ⟩ in Proposition 4.6. Define

V :=
(
XsX

1,mZsZ
1,m ⊗ . . .⊗XsX

n,mZsZ
n,m

)
· U,

then the quantum state at the end is given by

(V ⊗ I) |ψ⟩ .

4.2.3 Proof of Universality

We are now ready to prove the universality of the brickwork state [BFK09]. Loosely speaking,
we aim to show that for an arbitrary n × n unitary U , there exists a measurement pattern
{ϕx,y}x∈[n],y∈[m−1] that implements a unitary V , which approximates U .

To formalize the task, we fix the universal quantum gate set S := {CX, H, T}, which was
shown to be universal in [BMPRV00]. Any n×n unitary U can then be efficiently approximated
by a quantum circuit C operating on n qubits and consisting of gates chosen from S (see
Definition 2.8). Our goal is to construct a measurement pattern {ϕx,y}x∈[n],y∈[m−1] on Gn×m

that implements the same unitary up to local Pauli operators, as these can be handled in the
classical post-processing step already described in Section 4.1. Furthermore, m will scale linearly
with the size of C, and we will require only measurement angles in the set Θ (as defined in
Chapter 2). Note that the updated measurement angles also remain in Θ, as considering them
modulo 2π does not change the measurement.

To achieve this, we first present measurement patterns on the unit cell that implement T ⊗ I
and H ⊗ I. We then argue that T and H can be implemented in a similar manner. For formal
reasons, we also describe how to implement the identity I. Finally, we provide a measurement
pattern that implements CX. With these foundational patterns established, we proceed to prove
universality by demonstrating how to combine these patterns on a general brickwork state to
implement any quantum circuit using S as a universal gate set.

We begin with the following lemma, which uses a notation slightly different from that
described earlier in Fig. 4.1: The angle is now written inside the circle, and the measurement
outcome is omitted.
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Lemma 4.7. We are given the following measurement pattern on the unit cell for arbitrary
angles α, α′, β, β′, γ, γ′ ∈ R:

α β γ 0

α′ β′ γ′ 0

By executing the updated measurement pattern, the implemented unitary corresponds, up to
local Pauli operators, to

Rz(γ)Rx(β)Rz(α)⊗Rz(γ′)Rx(β′)Rz(α′).

Proof. By Proposition 4.6 and Corollary 4.2, this measurement pattern implements the unitary

CZ ·(HRz(0)⊗HRz(0))·
(
HRz(γ)⊗HRz(γ′)

)
·CZ ·

(
HRz(β)⊗HRz(β′)

)
·
(
HRz(α)⊗HRz(α′)

)
.

Another way to see this is by writing out the quantum circuit and repeatedly apply Corollary 4.2.
This method follows exactly the same steps as those in the single-qubit case described in the
example corresponding to Fig. 4.2. Using the identities in (4.8), along with the fact that

CZ
(
Rz(θ)⊗Rz

(
θ′
))

=
(
Rz(θ)⊗Rz

(
θ′
))

CZ

for all θ, θ′ ∈ R, as both unitaries are diagonal matrices in the standard basis, and that CZ2 = I,
the expression can be simplified to the desired form.

By plugging in explicit values for the angles, we can implement various unitaries, as shown
in Figs. 4.7 and 4.8.

π
4 0 0 0

0 0 0 0

Figure 4.7: Implementation of T ⊗ I.

π
2

π
2

π
2 0

0 0 0 0

Figure 4.8: Implementation of H ⊗ I.

The calculation for multiplying the matrices will be omitted, as it is trivial to verify. One
only needs the identities cos(π

4 ) = sin(π
4 ) = 1√

2 and eiπ/2 = i. Note that, by symmetry, we also
obtain I ⊗ T and I ⊗H by switching the upper and lower angles. Furthermore, if we use the
brickwork state G1×5 with the angles in the first row, we obviously implement the T and H
unitaries. If all angles are set to 0, we then obviously implement the identity.

Lastly, we want to show that the CX unitary can be implemented as follows:

0 0 π
2 0

0 π
2 0 -π

2

Figure 4.9: Implementation of CX.

To prove this, we take use the following simple identity:

Z ·Rx(−π
2 ) · Z ·Rx(π

2 ) = −iX, (4.13)

which can be easily verified through direct computation. The measurement pattern imple-
ments the quantum computation described by the following quantum circuit (up to local Pauli
operators):
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H H HRz(π
2 ) H

H HRz(π
2 ) H HRz(−π

2 )

This circuit is equivalent to:

Rz(π
2 )

Rx(π
2 ) Rx(−π

2 )

Since global phases are irrelevant, we can replace Rz(π
2 ) with P (π

2 ) = ( 1 0
0 i ). To confirm that

this new circuit implements CX, we need only verify that it behaves identically to CX when
acting on the standard basis states. For input |0⟩ ⊗ |b⟩, where b ∈ {0, 1}, both unitaries leave
the state unchanged. For input |1⟩ ⊗ |b⟩, where b ∈ {0, 1}, the circuit maps the state to:

i |1⟩ ⊗
(
Z ·Rx(−π

2 ) · Z ·Rx(π
2 )
)
|b⟩ = i |1⟩ ⊗ −iX |b⟩ = |1⟩ ⊗X |b⟩ = CX(|1⟩ ⊗ |b⟩),

where we used the identity from Eq. (4.13) in the first equality. Thus, the measurement pattern
shown in Fig. 4.9 successfully implements CX.

We simply need to put the components together to prove universality. Note that all the
measurement angles in the presented pattern lie in Θ, as considering them modulo 2π does not
change the measurement.

Theorem 4.8 (Universality [BFK09, Theorem 1]). The brickwork state Gn×m is universal for
quantum computation. Furthermore, we only require single-qubit measurements under angles in
Θ, and measurements can be done layer-by-layer.

Proof. Let C be a quantum circuit operating on n qubits, consisting of gates from the set
S := {CX, H, T}. Denote the size of C, i.e., the number of gates in C, by g. We define
m := 8g + 1. Our goal is to construct a measurement pattern {ϕx,y}x∈[n],y∈[m−1] on Gn×m that
implements the same unitary as C (up to local Pauli operators). Remember that the i-th row of
physical qubits in the brickwork state can be viewed as representing the logical qubit in the i-th
row of the quantum circuit. We now explain how to implement the gates in C sequentially on
Gn×m. To simplify the procedure, we defer the gates in C such that no gates are implemented
in parallel. This reordering does not affect the overall unitary transformation. For better
understanding, we recommend keeping the illustration of the general brickwork state in Fig. 4.5
handy.

We start with the first gate, assuming it is a T gate or H gate acting on the i-th row. If
n is even, the first five qubits in the i-th row of the brickwork state correspond to either the
upper or lower part of a unit cell. In this case, the measurement patterns in Figs. 4.7 and 4.8
(or their mirrored counterparts) can be used to implement the unitary, while all other unit cells
implement the identity using angles set to 0. If n is odd but i < n, the same method applies. For
i = n, it suffices to use the same angles as in the first row in Fig. 4.7 or Fig. 4.8 to implement
the unitary, while all other unit cells again implement the identity. Therefore, we can always
implement the T and H gates using the first five layers of the brickwork state. For technical
reasons, we use a measurement pattern that implements the identity (all angles are zero) for
layers 5 through 9.

Now, assume the first gate is a CX gate with control on the i-th row and target on the
(i + 1)-th row. If i is odd, the CX gate can be implemented using a unit cell in the first five
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layers of the brickwork state, as shown in Fig. 4.9, while all other rows in these layers implement
the identity. Additionally, the identity is implemented in layers 5 through 9. If i is even, we
instead implement the identity in the first five layers and use a unit cell in layers 5 through 9 to
implement the CX gate.

Our procedure ensures that the first gate can always be implemented using the first nine
layers of the brickwork state. To implement the second gate, we repeat the same process, now
using layers 9 through 17. These layers have the same structure as layers 1 through 9, allowing
the same reasoning to apply. This procedure is repeated for all subsequent gates, leveraging the
periodic structure of the brickwork state. By Corollary 4.2, this procedure implements exactly
the unitary C (up to local Pauli operators).

In conclusion, the family of brickwork states can efficiently simulate any quantum circuit.
Conversely, it is straightforward to see that any computation using the brickwork state can be
efficiently simulated in the quantum circuit model. Thus, the two models are computationally
equivalent, showing that the family of brickwork states is universal for quantum computation.

Note that we could also add four additional layers that implement the identity at the end, to
return to the setting where m ≡ 5 mod 8.
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Chapter 5

Half-Blind Quantum Computation

In this chapter, we present a new protocol that extends the universal blind quantum computation
(UBQC) protocol by Broadbent, Fitzsimons, and Kashefi [BFK09]. In the UBQC protocol,
the client requests the server to blindly apply an n× n unitary U to the fixed quantum state
|+⟩⊗n. In this section, we generalize this protocol to a setting where the unitary is blindly
applied to an arbitrary quantum state held by the server, which may be entangled with some
internal register of the server. More formally, we aim to blindly implement the computation
(U ⊗ I) |ψ⟩, where |ψ⟩ is an arbitrary state held by the server. Henceforth, we refer to this
task as half-blind quantum computation (HBQC). We also provide a proof of correctness and
information-theoretical blindness for this protocol. In the next section, we show how to make
the interaction purely classical, thereby removing the requirement for the client to send qubits
to the server. This is achieved by combining the HBQC protocol with our blind RSP protocol
from Chapter 3. We refer to this task as classical half-blind quantum computation (CHBQC).
Once again, we provide a proof of correctness and computational blindness for the protocol.

In the context of this thesis, this chapter introduces the CHBQC protocol, which serves as
the core component of our compiler.

5.1 Half-Blind Quantum Computation
The concept of secure delegated quantum computing (DQC) protocols is motivated by highly
practical considerations. It is reasonable to anticipate that, when quantum computers become
available, they will be hosted by large institutions offering their services in a cloud-based model,
making them accessible to a significant portion of the human population. Secure protocols are
designed to enable clients with limited or no quantum technology to access the full power of
quantum computers while ensuring the privacy of their information.

A parallel can be drawn to the current scenario involving supercomputers. An entire research
area, known as cloud computing, focuses on delegating heavy computations to powerful computers
owned by large companies to speed up calculations. However, there is no guarantee that these
companies will not access the data sent to them; in other words, they can potentially view
the computations being performed. In the classical world, we try to overcome these obstacles
by using techniques such as fully homomorphic encryption, which allows computations to be
performed on encrypted data without the need to decrypt it first.

In the quantum world, the universal blind quantum computation (UBQC) protocol, introduced
by Broadbent, Fitzsimons, and Kashefi in [BFK09], was the first to ensure the secure delegation
of quantum computations between a client and a server, assuming the client has specific, limited
quantum capabilities. Without delving too deeply into the UBQC protocol, let us briefly
outline how it works. Throughout this discussion, the terms ‘client’ and ‘verifier’ will be used
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interchangeably, as will ‘server’ and ‘prover’. Additionally, it is worth noting that this section
heavily relies on Chapter 4.

The UBQC setting is as follows: The server is assumed, for simplicity, to have full quantum
computational power, while the client can only prepare single qubits in the state

|+θ⟩ := 1√
2

(|0⟩+ eiθ |1⟩),

where θ ∈ Θ := {k · π/4 | k = 0, . . . , 7}. In the protocol, the client holds a classical description
of a measurement pattern that implements an n× n unitary U on the brickwork state Gn×m. In
the first phase, the client prepares |+θ⟩ states with uniformly random θ ←$ Θ and sends them
to the server, keeping θ secret. The server then entangles these qubits using the CZ operator
according to the structure of the brickwork state Gn×m. In the second phase, the two parties
interact classically. The client instructs the server to measure the qubits in specific bases, while
the server reports the measurement outcomes. The bases are chosen adaptively based on the
server’s prior measurement outcomes. At the end of the protocol, the server holds the state
U |+⟩⊗n, up to local Pauli operators. Through this process, the client successfully delegates the
application of the n× n unitary U to the fixed quantum state |+⟩⊗n within the MBQC model.

The most naive solution to this task would be for the server to create Gn×m, the client to send
over the description of the measurement pattern, and the server to execute the pattern on Gn×m.
However, in this approach, the server learns which unitary U is being applied, compromising the
client’s privacy. In the actual protocol, a different approach is taken, as hinted by the use of
random z-rotated |+⟩ states used in the brickwork state. It is crucial to note that the UBQC
protocol relies on the fact that all qubits in the resource state are prepared by the client. This
preparation allows the client to introduce randomness, which effectively hides the measurement
angles and prevents the server from deducing information about the measurement pattern used
to implement U .

In this work, however, we want the client not to operate on the fixed state |+⟩⊗n, but rather
on a quantum state |ψ⟩ held by the server, which may be entangled with some internal register
of the server. More formally, we aim to blindly implement the computation (U ⊗ I) |ψ⟩, where
|ψ⟩ is an arbitrary state held by the server. Naturally, we need to incorporate the server’s qubits
into the brickwork state, but this gives rise to another challenge when attempting to apply a
modified version of the UBQC protocol in a naive way. Specifically, in UBQC, it is crucial
that all the qubits in the brickwork state are prepared by the client to introduce randomness
through z-rotations. This is no longer possible, as the qubits belonging to the server are never in
the client’s possession. Nevertheless, we can overcome this limitation with a simple trick. The
intuition behind our solution is that by teleporting |ψ⟩ into the original brickwork state prepared
by the client, we achieve the same effect as applying random rotations to |ψ⟩, thereby resolving
the problem of the client lacking direct access to |ψ⟩. A more formal description will follow.

In Chapter 4, particularly Proposition 4.6, we observed that instead of using the |+⟩⊗n

state as the first layer in the brickwork state, we can use any n-qubit quantum state |ψ⟩. This
substitution results in U |ψ⟩ (up to some local Pauli operators). This fact is well-known in
the MBQC literature and has been utilized, for instance, in [MDF17] in the context of cluster
states. Furthermore, if |ψ⟩ consists of more than n qubits, and the first n qubits are used when
executing the measurement pattern, then the overall computation is simply (U ⊗ I) |ψ⟩ (up to
some local Pauli operators), as the MBQC procedure implements gates independently of the
input state, as explained in the discussion following the proof of Proposition 4.6. Consequently,
the first step is for the server to use its qubits in the first layer of the brickwork state, while the
remaining qubits are prepared by the client.

The remaining challenge is to demonstrate how the client can hide his measurement angles
while allowing the verifier to execute the measurement pattern. To solve this, we extend the
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regular brickwork state Gn×m, to a larger brickwork state Gn×(m+8) by introducing eight layers
of dummy |+⟩⊗n states between the input layer and the remaining m− 1 layers (see Figs. 5.1
and 5.2 for examples). The first eight layers are then measured in the 0-basis to implement the
identity, while the remaining qubits are measured according to the original measurement pattern.
Note that after these first eight layers, the server measures qubits that were prepared by the
client with the injected randomness. In this procedure, loosely speaking, we teleport the |ψ⟩
state to the point where the randomness has already been injected, achieving the same effect as
directly injecting randomness into |ψ⟩. While this could be achieved with just two additional
layers instead of eight (as two layers suffice to implement an identity gate), using eight layers
preserves the topology of the brickwork state, making the write-up more convenient.

Figure 5.1: The brickwork state G4×5. Figure 5.2: The brickwork state G4×13.

In the following, we formally describe our half-blind quantum computation (HBQC) protocol
and refer the reader to Chapters 2 and 4 for background information and notational conventions.

Our HBQC Protocol. The input and output of the protocol are:

• (Input) The client V has an n-qubit unitary map U , represented as a sequence of measure-
ment angles {ϕx,y : ϕx,y ∈ Θ}x∈[n],y∈[m−1] of a measurement-based quantum computation
over a brickwork state Gn×m.
The server P inputs the first n qubits of a quantum state |ψ⟩.

• (Output) At the end of the interaction, the client holds the measurement outcome of
measuring the first n qubits of (U ⊗ I) |ψ⟩ in the standard basis and the server holds the
post-measurement state of the remaining qubits.

For the interaction, we define m′ := m+ 8 and the new measurement pattern

φx,y := 0 ∀x ∈ [n], y ∈ [8]
φx,y := ϕx,y−8 ∀x ∈ [n], y ∈ J9,m′ − 1K

for the larger brickwork state Gn×m′ . The interaction between V and P proceeds as follows:

• (State Preparation)

1. For the column y = 1, and each row x ∈ [n], P uses his input qubits (the first n
qubits from his quantum state |ψ⟩).

2. For each column y ∈ J2, 8K, and each row x ∈ [n], P creates qubits in the |+⟩ state.
3. For each column y ∈ J9,m′ − 1K, and each row x ∈ [n], V prepares the state

∣∣∣+θx,y

〉
,

where θx,y ←$ Θ, and sends the qubit to P .
4. For the column y = m′, and each row x ∈ [n], P creates qubits in the |+⟩ state, which

are used as the final output layer.
5. P entangles the qubits by applying CZ operators between the pairs of qubits specified

by the pattern of the brickwork state Gn×m′ .
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• (Computation)

For column y = 1, . . . , 8:
For row x = 1, . . . , n:

1. V computes the updated measurement angle φ′x,y, to take previous measurement
outcomes received from P into account.

2. V transmits δx,y := φ′x,y to P .
3. P measures in the δx,y-basis and transmits the result bx,y ∈ {0, 1} to V .
4. V sets sx,y := bx,y.

For column y = 9, . . . ,m′ − 1:
For row x = 1, . . . , n:

1. V computes the updated measurement angle φ′x,y, to take previous measurement
outcomes received from P into account.

2. V computes δx,y := φ′x,y − θx,y + rx,yπ, where rx,y ←$ {0, 1}, and transmits it to P .
3. P measures in the δx,y-basis and transmits the result bx,y ∈ {0, 1} to V .
4. V calculates sx,y := bx,y ⊕ rx,y.

• (Measurement)

1. P measures the remaining n qubits in the standard basis and sends the outcome
a′ ∈ {0, 1}n to V .

2. V computes the actual outcome a :=
(
sX

1,m′ ∥ . . . ∥ sX
n,m′

)
⊕ a′.

5.1.1 Correctness

We prove that the protocol implements the desired functionality.

Theorem 5.1. The HBQC protocol as described above is correct, i.e., if both parties honestly
follow the protocol, the output will be correct.

Proof. The measurement pattern {ϕx,y}x∈[n],y∈[m−1] implements, by definition, the unitary U .
The 0-basis measurements in the first eight layers implement an identity gate (as described in
Section 4.2.3), meaning that {φx,y}x∈[n],y∈[m′−1] still implements U .

We now argue that the added randomness in the measurement angles δ and the quantum states
|+θ⟩ cancels out during the computation, so that we still perform the same quantum computation
according to the standard execution of the updated measurement pattern {φ′x,y}x∈[n],y∈[m′−1].
Note that the CZ operator commutes with both Rz(θ)⊗ I and I ⊗ Rz(θ), as all are diagonal
matrices in the standard basis. Thus, the state preparation phase is equivalent to first preparing
the brickwork state and then applying the z-rotations to the specific qubits, rather than doing it
the other way around.

Moreover, a φ′-basis measurement on a state |γ⟩ is the same as a (φ′− θ)-basis measurement
on a state Rz(θ) |γ⟩, as can be verified by explicitly writing out the definition. In the protocol,
we measure in the δ-basis, where δ := φ′ − θ + rπ. If r = 0, P ’s measurement has the same
effect as V ’s target φ′-basis measurement; if r = 1, all V needs to do is flip the outcome to
get again the target φ′-basis measurement, since Rz(rπ) equals Zr up to a global phase and
Z |+β⟩ = |−β⟩ for all β ∈ R. This shows that the protocol yields the same outcome as directly
executing the updated measurement pattern {φ′x,y}x∈[n],y∈[m′−1], without any added randomness.
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Therefore, by Proposition 4.6, after the computation phase, the server holds the quantum state
(U ′ ⊗ I) |ψ⟩, where

U ′ :=
(
X

sX
1,m′Z

sZ
1,m′ ⊗ . . .⊗XsX

n,m′Z
sZ

n,m′

)
U.

Obtaining the outcome a′ by measuring the first n qubits of (U ′ ⊗ I) |ψ⟩ is equivalent to
obtaining outcome a by measuring the first n qubits of (U ⊗ I) |ψ⟩, since the XsX

i,m′ operators
only flip the bits at the corresponding positions, depending on the values of sX

i,m′ , while the
Z

sZ
i,m′ operators have no effect (just introducing a global phase). In other words:(〈

a′
∣∣⊗ I) (U ′ ⊗ I) |ψ⟩ = ± (⟨a| ⊗ I) (U ⊗ I) |ψ⟩ .

This also immediately shows that the post-measurement state of the remaining qubits of
(U ′ ⊗ I) |ψ⟩, given the measurement outcome a′, is the same as that of the remaining qubits of
(U ⊗ I) |ψ⟩, given the measurement outcome a, up to a global phase.

5.1.2 Information-Theoretical Blindness

We begin by providing an intuition of what should be encapsulated by the blindness property
before presenting a formal definition. Intuitively, for blindness, the following should hold: A
malicious server should be unable to distinguish between the possible computations chosen by
the client based on the information it receives during the protocol. However, it is important
to note that the server does learn the dimensions of the brickwork state, (n,m), which provide
an upper bound on the size of the client’s computation. This information will be modeled as a
leakage to the server.

To formalize this intuition, recall that any quantum adversary can be modeled as a sequence
of unitaries, acting on the message registers along with an internal register containing the
adversary’s workspace and sufficiently-many ancillas. Thus, when defining blindness we can
without loss of generality consider only the state that the adversary holds at the end of the
execution. More precisely, for a given input W = {ϕx,y}x∈[n],y∈[m−1] (encoded as a measurement
pattern), we define σW,a to be the (subnormalized) state held by the prover in the end of the
protocol, corresponding to the output of the verifier being a, and conditioned on the input of
the protocol being W . We define information-theoretical blindness in the following.

Definition 5.2 (Information-Theoretical Blindness). The HBQC protocol is information-
theoretically blind while leaking at most L(·), the dimensions of the used brickwork state,
if for all provers and for all possible inputs W0 and W1 with L(W0) = L(W1), we have that∑

a

σW0,a =
∑

a

σW1,a.

First, note that the prover can be computationally unbounded, which gives rise to the
information-theoretic version of blindness. Second, observe that this definition differs from the
one presented in [BFK09]. An equivalent version of their definition was provided in [FK17], which
states that the protocol with input W is blind while leaking at most L(W ) if the distribution of
messages obtained by the prover during the protocol depends only on L(W ). Our definition is
implied by theirs, but we choose this alternative formulation as it will be more convenient to
generalize to the computational setting.

Let us now prove the following helpful lemma, before moving on to prove blindness.

Lemma 5.3. For all θ ∈ R, we have |+θ⟩⟨+θ|+ |+θ+π⟩⟨+θ+π| = I.
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Proof. Follows by direct calculation:

|+θ⟩⟨+θ|+ |+θ+π⟩⟨+θ+π| =
1
2

(
1 e−iθ

eiθ 1

)
+ 1

2

(
1 e−iθ−iπ

eiθ+iπ 1

)

= 1
2

(
1 e−iθ

eiθ 1

)
+ 1

2

(
1 −e−iθ

−eiθ 1

)
= I.

Theorem 5.4. The HBQC protocol is information-theoretically blind while leaking at most the
dimensions of the brickwork state.
Proof. The proof follows the same argument as in [BFK09], up to minor syntactical adjustments.
Let W = {ϕx,y}x∈[n],y∈[m−1] be an arbitrary input with L(W ) = (n,m). Note that throughout
the execution of the protocol the server receives (n,m), along with the following information

{φ′x,y}x∈[n],y∈[8],
{∣∣∣+θx,y

〉
, φ′x,y − θx,y + rx,yπ

}
x∈[n],y∈J9,m′−1K

.

The first tuple can be ignored for the analysis, as this information is something the server can
compute on its own, since

φ′x,y = (−1)sX
x,y · φx,y + sZ

x,y · π = sZ
x,y · π ∀x ∈ [n], y ∈ [8]

and the server knows sx,y = bx,y for all x ∈ [n], y ∈ [8], hence also sZ
x,y. We are left with{∣∣∣+θx,y

〉
, φ′x,y − θx,y + rx,yπ

}
x∈[n],y∈J9,m′−1K

= {
∣∣+τx,y+rx,yπ

〉
, φ′x,y − τx,y}x∈[n],y∈J9,m′−1K

by defining τx,y := θx,y − rx,yπ. Now, consider τx,y to be sampled uniformly at random from Θ
instead of θx,y. The distribution remains unchanged.

We now argue that, from the server’s perspective, each qubit is independently in the maximally
mixed state, and that each angle is independently and uniformly distributed in Θ. To do this,
we begin by considering the information from the last layer, i.e.,

{
∣∣+τx,y+rx,yπ

〉
, φ′x,y − τx,y}x∈[n],y=m′−1.

Note that rx,m′−1 only appears in the quantum state
∣∣∣+τx,m′−1+rx,m′−1π

〉
, and for example, not

in
φ′i,m′−1 = (−1)sX

i,m′−1 · φi,m′−1 + sZ
i,m′−1 · π

for i ∈ [n], since only the measurement outcomes sj,k = bj,k ⊕ rj,k from the previous layers
appear in the formula. Thus, rx,m′−1 for x ∈ [n] is independent of everything else and hidden
from the server, meaning the server receives the maximally mixed state I/2 by Lemma 5.3.
Therefore, only φ′x,m′−1 − τx,m′−1 depends on τx,m′−1, which is then also uniformly random and
independent of everything else. Consequently, the qubits in layer y = m′ − 1 are maximally
mixed, and the corresponding angles are independently uniformly distributed.

We can now inductively move on to the previous layer, say layer yi, and apply the same
reasoning, where the key observation is that rx,yi no longer depends on the angles defined in
subsequent layers. To summarize, we have shown that the view of the server consists of the
classical messages:

{τ∗x,y : τ∗x,y ←$ Θ}x∈[n],y∈J9,m′−1K

and all qubits are in the maximally mixed state.
We can conclude that the view of the server is perfectly independent of W , which proves the

desired implication.
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5.2 Classical Half-Blind Quantum Computation
Finally, we show how to make the verifier in the HBQC protocol completely classical, at the cost
of introducing computational assumptions. We refer to this task as classical half-blind quantum
computation (CHBQC). The protocol is identical to the one presented in Section 5.1, except for
the following two modifications:

• We replace step 3 in the State Preparation phase with any blind RSP protocol that satisfies
the properties outlined in Definition 3.1. For all (x, y), repeat the blind RSP protocol until
it terminates successfully. Denote the verifier’s output as (tx,y, θx,y).

• In step 2 of the Computation phase, for y ∈ J9,m′ − 1K, we instead define

δx,y := φ′x,y − (θx,y + tx,yπ) + rx,yπ.

We remark that since the security parameter was introduced in the protocol, all inputs (including
the brickwork dimensions) will implicitly depend on λ. However, this dependency is omitted
when it is clear from the context. Furthermore, regarding termination in the first bullet point,
we still terminate after a polynomial number of attempts with a probability negligibly close to 1,
using a standard argument based on the Chernoff bound.

5.2.1 Correctness

Next, we show that the protocol is still correct.

Theorem 5.5. The CHBQC protocol as described above is correct, i.e., if both parties honestly
follow the protocol, the output will be correct.

Proof. This follows directly from the correctness of both the HBQC protocol and the blind RSP
protocol. Note that the RSP protocol prepares states in

Ztx,y

∣∣∣+θx,y

〉
=
∣∣∣+θx,y+tx,yπ

〉
.

Now, let θ∗x,y := θx,y + tx,yπ be the regular angle used in the HBQC protocol, which only appears
in the above quantum state and the measurement angle δx,y. The δx,y is in the CHBQC protocol
also appropriately modified and so correctness follows directly from the correctness of the HBQC
protocol.

5.2.2 Computational Blindness

Before proving blindness against QPT adversaries, we present a formal definition of computational
blindness. Analogous to the information-theoretic version of the definition, for a given family of
inputs W = {Wλ}λ∈N, we denote by σλ

W,a the (subnormalized) state of the prover at the end of
the protocol run with security parameter λ, corresponding to the verifier’s output being aλ, and
conditioned on the input of the protocol being Wλ.

Definition 5.6 (Computational Blindness). The CHBQC protocol is computationally blind
while leaking at most L(·), the dimensions of the used brickwork state, if for all families of
inputs W0 = {Wλ,0}λ∈N and W1 = {Wλ,1}λ∈N such that L(Wλ,0) = L(Wλ,1) and any family of
QPT-implementable POVMs {Mλ, I −Mλ}λ∈N, there exists a negligible function negl such that
for all λ ∈ N it holds that:∣∣∣∣∣∑

aλ

tr(σλ
W0,aMλ)−

∑
aλ

tr(σλ
W1,aMλ)

∣∣∣∣∣ ≤ negl(λ).
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The definition captures the behavior that an efficient adversary cannot distinguish between
the two inputs.

Theorem 5.7. The CHBQC protocol is computationally blind while leaking at most the dimen-
sions of the brickwork state.

Proof. The proof follows the same structure as that of Theorem 5.4. Let W = {ϕx,y}x∈[n],y∈[m−1]
be an arbitrary input with L(W ) = (n,m). The view of the distinguisher consists of the
transcript of the RSP protocol, along with the classical variables

{δx,y := φ′x,y}x∈[n],y∈[8] and
{
δx,y := φ′x,y − (θx,y + tx,yπ) + rx,yπ

}
x∈[n],y∈J9,m′−1K

,

where the first tuple does not depend on W and it only depends on public information that the
server has, and therefore it can be ignored.

We proceed via a hybrid argument where, starting from the last layer, we substitute each δx,y

with a uniformly sampled δ∗x,y ←$ Θ. To see why each hybrid is computationally indistinguishable
from the previous one, it suffices to observe that

δx,y ≡ φ′x,y − (θx,y + tx,yπ) + rx,yπ

≡ φ′x,y − θx,y + r∗x,yπ

≈c φ
′
x,y − θ∗x,y + r∗x,yπ

≡ δ∗x,y

where r∗x,y ←$ {0, 1} and θ∗x,y ←$ Θ. The second equivalence follows since rx,y is sampled
uniformly and independently of tx,y and thus rx,y ⊕ tx,y ∈ {0, 1} is uniformly distributed as well.
The computational indistinguishability follows by the blindness of the RSP protocol.

Finally, in the last hybrid, we can see that the view of the adversary consists of some
transcripts of the RSP protocol and a set of randomly sampled {δ∗x,y}x,y, and in particular is
perfectly independent of W . Thus, no computationally bounded distinguisher can tell apart two
executions for W0 and W1 such that L(W0) = L(W1), concluding our proof.
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Chapter 6

A New Compiler for Nonlocal Games

In this chapter, we present a novel compiler for transforming nonlocal games into an interactive
protocol involving only a single computationally bounded player. We begin with a brief
introduction to nonlocal games and take a closer look at the inner workings of the KLVY
compiler, named after Kalai, Lombardi, Vaikuntanathan, and Yang in [KLVY23]. In the next
section, we introduce our new compiler, whose core component is outlined in Section 5.2, and we
provide proofs for quantum completeness and quantum soundness. Subsequently, we present a
concrete example of the compilation process by applying our compiler to the famous CHSH game
[CHSH69]. Finally, we compare our compiler with the KLVY compiler in terms of efficiency,
computational assumptions, and properties.

The description of our compiler, together with the proofs for quantum completeness and
quantum soundness, forms the highlight of this thesis. In comparison to the KLVY compiler,
which relies on the existence of quantum homomorphic encryption (QHE) schemes, our compiler
solely relies on the existence of plain TCFs. Moreover, our compiler is built from a black-box
blind RSP protocol, satisfying Definition 3.1, which, in turn, was constructed in Section 3.3
from a black-box plain TCF. Thus, our approach provides a highly modular framework for
instantiating the compiler. Furthermore, there already exist various constructions based on a
variety of computational assumptions to implement TCFs, as discussed in Section 3.2. This
flexibility allows our compiler to be implemented, for example, using post-quantum assumptions
in isogeny-based cryptography.

6.1 Nonlocal Games
In the previous chapters, we explored some principles and applications of quantum information—a
field grounded in the laws of quantum mechanics, which describe the behavior of nature at the
smallest scales. The development of quantum mechanics was significantly advanced by many
physicists, including Niels Bohr [Boh13], Werner Heisenberg [Hei25], Erwin Schrödinger [Sch26],
Max Born [Bor26], Paul Dirac [Dir28], among others. When it first emerged, quantum mechanics
was highly controversial, as it introduced deeply counterintuitive concepts, such as its inherently
probabilistic nature. In 1935, physicists Albert Einstein, Boris Podolsky, and Nathan Rosen
published a paper outlining the Einstein–Podolsky–Rosen (EPR) paradox [EPR35]. The paper
presents a thought experiment that questions whether quantum mechanics provides a complete
description of physical reality, leading to the conclusion that it should be supplemented by
hidden variables. Loosely speaking, a hidden-variable theory, is a physical model that seeks to
explain the probabilistic outcomes of quantum mechanics by introducing additional (possibly
inaccessible) variables that predetermine the outcomes of measurements. This means that, before
the measurement is performed, the result is already determined. Another term we will encounter
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is the principle of locality, which loosely states that an object is influenced directly only by its
immediate surroundings.

The mathematical implications of local hidden-variable theories in the context of quantum
mechanics were explored by physicist John Stewart Bell, who, in 1964, showed that such
theories satisfy a constraint now known as Bell’s inequality [Bel64]. Bell further argued that
the predictions of quantum mechanics violate these inequalities, showing the incompatibility
between local hidden-variable theories and quantum mechanics. Subsequent work, such as that
by Clauser, Horne, Shimony, and Holt (CHSH), refined Bell’s theorem into a more experimentally
testable form [CHSH69]. These theoretical insights were validated through experimental tests,
commonly referred to as Bell tests. The first such test was conducted by Clauser and Freedman
in 1972 [FC72].

Modern formulations of such experimental setups are often framed using the language of
computer science and are referred to as nonlocal games. These games are extensively studied
in quantum information theory because they provide profound insights into the foundational
aspects of quantum mechanics and have practical implications for fields such as cryptography.
One significant application of this framework is Device-Independent Cryptography, which enables
cryptographic protocols, such as Quantum Key Distribution, that do not require trust in the
internal workings of the devices involved—a concept first introduced by Mayers and Yao in
[MY98]. In these protocols, one verifies that the output statistics satisfy certain properties,
forcing the devices to behave in a desired manner without knowing what happens in their inner
workings.

Before providing a formal mathematical definition of a nonlocal game, we will describe it in
simple terms to build an intuitive understanding of the concept. Loosely speaking, a nonlocal
game is a hypothetical interaction involving a referee and two spatially separated cooperating
players, Alice and Bob. Each player is assigned a fixed set of possible questions and a fixed
set of possible answers. The referee samples a pair of questions according to a predetermined
probability distribution defined over the product space of the question sets and sends one question
to each player. The players then respond with answers chosen from their respective answer
sets. The referee evaluates whether the answers, in conjunction with the questions, satisfy a
predefined correlation, referred to as a predicate. If they do, the players win; otherwise, they
lose.

The interesting aspect of these games is that all sets, the probability distribution, and the
winning condition (or predicate) are fixed and known to the players before the game begins. This
allows the players to agree beforehand on a strategy for how to respond based on the questions
they receive, aiming to maximize their winning probability. Additionally, they are permitted to
share resources prior to the game, such as shared classical randomness or quantum resources like
entangled qubits. However, no communication between the players is allowed during the game.

The analysis of such games typically involves determining the maximal winning probability
under specific constraints, such as whether the players are classical or quantum—that is, whether
they are restricted to sharing classical or quantum resources. The maximal winning probability
is then referred to as the classical value or the quantum value of the game, depending on the
resources allowed. By comparing the performance of classical and quantum strategies in these
games, we will see that there are games where the quantum value is indeed strictly greater than
the classical value. This enables nonlocal games to experimentally demonstrate the presence of
quantum entanglement (assuming that no physical theory beyond quantum mechanics describes
our reality).

In the following, we review the formal definition of nonlocal games, which we restrict to two
players for simplicity, and present related quantities of interest. We will closely follow the works
of [KMPSW24, CHTW04, Slo19] for this section.
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Definition 6.1 (Nonlocal Game). A (two-player) nonlocal game is a tuple

G = (IA, IB,OA,OB, µ, V ),

which describes a game involving two non-communicating players, Alice and Bob, who interact
with a referee. The sets IA, IB,OA, and OB are finite. The elements of IA (resp. IB) are
referred to as the questions for Alice (resp. questions for Bob), while the elements of OA (resp.
OB) are called the answers of Alice (resp. answers of Bob). Moreover,

µ : IA × IB → [0, 1]

is a probability distribution, and

V : OA ×OB × IA × IB → {0, 1}

is the verification function, also called the predicate. In the game, the referee samples a question
pair (x, y)← µ, sending x to Alice and y to Bob. Alice and Bob then return answers a ∈ OA and
b ∈ OB, respectively. The referee evaluates V (a, b, x, y) to determine the outcome: The players
win if the result is 1 and lose if the result is 0.

A k-player nonlocal game is defined similarly, simply by extending the definition in a natural
way. We may also use the notation V (a, b|x, y) instead of V (a, b, x, y) to emphasize that this
represents the value of answers a, b given questions x, y. Moreover, we emphasize that these
games are described within the information-theoretical model, meaning that the players are
computationally unbounded and not restricted to any specific computational model. This
perspective will change when we consider compiled games in Section 6.2, as computational
assumptions will be introduced to emulate spatial separation. A general nonlocal game is often
illustrated as in Fig. 6.1.

R

A B

x y

a b

Figure 6.1: A nonlocal game played between the referee R and two players A and B.

All information about the game G is available to the players before the game begins, allowing
them to agree on a strategy in advance. However, once the game starts, the players are not
allowed to communicate. Later, we will define specific types of strategies that Alice and Bob
can follow. For now, let S denote a general strategy. The key object in determining the winning
probability of the game is the conditional probability distribution of the answers (a, b) given
the questions (x, y), denoted by p(a, b|x, y), which is implicitly determined by the strategy S.
The collection {p(a, b|x, y)}a,b,x,y ∈ ROA×OB×IA×IB is often referred to as a correlation matrix,
which models the behavior of the players. The general formula for the winning probability when
following strategy S in the nonlocal game G is given by

ω(G, S) :=
∑
x,y

µ(x, y)
∑
a,b

V (a, b|x, y) · p(a, b|x, y), (6.1)

where the first sum ranges over all possible question pairs, weighted by their probabilities of
occurrence, and the second sum aggregates the probability terms for which the answers a and b
allow the two players to win the game, conditioned on the questions being x and y.

We now describe the specific types of strategies that we are interested in.
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Definition 6.2 (Deterministic Classical Strategy). A deterministic classical strategy S for a
nonlocal game G consists of the following:

• A function f : IA → OA.

• A function g : IB → OB.

Alice’s answer is then given by a := f(x), while Bob’s answer is given by b := g(y).

Thus, Alice and Bob must deterministically choose their answers based on the questions
they receive. Note that this definition implicitly assumes that Alice cannot see Bob’s question
and vice versa. This is reasonable, as no communication during the game is allowed, which is
ensured through spatial separation. In such a deterministic classical strategy S, the probability
of Alice and Bob answering a and b, when receiving x and y is given by

p(a, b|x, y) =
{

1 if a = f(x) and b = g(y),
0 else.

The winning probability can thus be expressed as

ω(G, S) =
∑
x,y

µ(x, y) · V (f(x), g(y)|x, y).

It is also possible to define a randomized classical strategy, where the two players may
use (possibly shared) randomness in their decisions. However, we will omit this definition, as
introducing randomness does not provide any advantage in these games. It can be formally
shown that classical randomness does not increase the winning probability. This is because
a randomized classical strategy can be expressed as a convex combination of deterministic
classical strategies. Consequently, the winning probability of a randomized classical strategy is
upper-bounded by that of the best deterministic strategy in the convex combination. Therefore,
we can restrict ourselves to examining deterministic classical strategies.

One is typically interested in the value of the game, which is the maximal winning probability
achievable by the players.

Definition 6.3 (Classical Value). Let G be a nonlocal game, and denote the set of deterministic
classical strategies for G by S. Then, the classical value of G is given by

ωc(G) := max
S∈S

ω(G, S).

Note that we are taking the maximum (not the supremum), as the maximum is always
achievable due to the finiteness of S.

In the next type of strategy we want to describe, the two players can behave quantumly
and share quantum resources. Specifically, they can prepare a quantum state |ψ⟩ of their choice
before the game begins, and during the game, they can use any POVM dependent on their
respective questions to measure their respective quantum systems. This can be illustrated as
shown in Fig. 6.2.

Definition 6.4 (Quantum Strategy). A quantum strategy for a nonlocal game G consists of the
following:

• Two finite-dimensional Hilbert spaces HA and HB.

• A bipartite state |ψ⟩ ∈ HA ⊗HB.
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• For every x ∈ IA, a POVM {Axa}a∈OA
acting on HA with outcomes a ∈ OA.

• For every y ∈ IB, a POVM {Byb}b∈OB
acting on HB with outcomes b ∈ OB.

R

A B

x y

a b

|ψ⟩

Figure 6.2: A general quantum strategy with both players sharing a state in |ψ⟩.

Note that, as in the classical case, this definition implicitly accounts for spatial separation. In
quantum mechanics, spatially separated subsystems are often represented by the tensor product
HA ⊗ HB of their Hilbert spaces HA and HB. One can think of HA as representing Alice’s
quantum system, on which she can operate, and HB as representing Bob’s quantum system.
Their joint quantum state is |ψ⟩. After receiving their respective questions, Alice and Bob can
measure their system with respect to a POVM of their choice. In such a quantum strategy, the
probability of Alice and Bob answering a and b, respectively, when receiving x and y, is given by
p(a, b|x, y) = ⟨ψ|Axa ⊗Byb |ψ⟩. Furthermore, note that one could also allow mixed states in the
definition, which might initially seem to make the strategy more powerful. However, using the
fact that every density operator admits a purification, we can instead consider the corresponding
pure state together with appropriately adjusted POVMs that produce the same probabilities.
Thus, randomizing the choice of quantum state does not yield any advantage, making pure
states sufficient for consideration. Moreover, when |ψ⟩ is not entangled (i.e., it is separable and
of the form |ψ1⟩ ⊗ |ψ2⟩ ∈ HA ⊗HB), the strategy becomes equivalent to a randomized classical
strategy. Therefore, entanglement is the feature that makes this type of strategy more powerful
than classical strategies, as we will see.

The value of a nonlocal game using quantum strategies is defined similarly to the classical
case.

Definition 6.5 (Quantum Value). Let G be a nonlocal game, and denote the set of quantum
strategies for G by S. Then, the quantum value of G is given by

ωq(G) := sup
S∈S

ω(G, S).

Note that we are taking the supremum (not the maximum), as there are infinitely many
possible strategies. In fact, there exists a nonlocal game where the quantum value is never exactly
achieved by a quantum strategy [Slo19]. The intuitive explanation is that the strategy can be
improved by increasing the dimensions of the spaces, enabling progressively better performance.

To conclude this section, we will examine an explicit example of a nonlocal game, including
computations for its classical value and quantum value. We consider the previously mentioned
famous CHSH game GCHSH, named after Clauser, Horne, Shimony, and Holt [CHSH69]. It is a
nonlocal game in which the questions and answers are binary values, i.e.,

IA = IB = OA = OB = {0, 1},

the probability distribution µ is uniform

µ(0, 0) = µ(0, 1) = µ(1, 0) = µ(1, 1) = 1
4 ,
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and the verification function V is defined by

V (a, b|x, y) =
{

1 if a⊕ b = x · y,
0 else.

The setup for this nonlocal game is therefore fully specified by these declarations.
Let us now compute the classical value of the CHSH game. We begin by proposing a simple

deterministic classical strategy defined via

f : IA → OA

x 7→ 0

and

g : IB → OB

y 7→ 0.

In words, Alice and Bob, regardless of what they receive, always respond with 0. It is evident
that the winning probability is 75%, as three out of four question pairs are answered correctly.
This implies that ωc(GCHSH) ≥ 75%.

We now argue that no other deterministic classical strategy can achieve a higher winning
probability. Assume, for the sake of contradiction, that such a strategy exists. That is, there
exist functions f and g that can answer all four question pairs correctly. This would mean they
satisfy the following equations:

f(0)⊕ g(0) = 0
f(0)⊕ g(1) = 0
f(1)⊕ g(0) = 0
f(1)⊕ g(1) = 1.

However, given these equalities, we can deduce

1 = 0⊕ 0⊕ 0⊕ 1
= (f(0)⊕ g(0))⊕ (f(0)⊕ g(1))⊕ (f(1)⊕ g(0))⊕ (f(1)⊕ g(1))
= 0,

where the last equality follows because each value appears twice in the XOR terms. This leads to
an obvious contradiction. Hence, our assumption that such functions exist is incorrect, proving
that ωc(GCHSH) ≤ 75%. Consequently, we conclude

ωc(GCHSH) = 75%.

The interesting part happens now, where we show that a quantum strategy exists that can
outperform this 75% bound. Consider the following quantum strategy, where Alice and Bob
meet beforehand and prepare an EPR pair, i.e., two qubits in the state

|ψ⟩ := 1√
2

(|00⟩+ |11⟩).

Alice will keep the first qubit, and Bob keeps the second. Consequently, we have the following
Hilbert spaces associated with their respective quantum systems: HA = HB = C2. Let us now
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describe how to define their POVMs with respect to the questions they receive. Recall that
performing unitary transformations on a quantum system followed by a measurement in the
computational basis can be modeled by a POVM; hence, we will describe their behavior in the
first setting. Since we need the y-rotation Ry(θ) for this strategy, we denote the received bits by
x̃ and ỹ to avoid confusion with the y in the index.

If Alice receives x̃ ∈ {0, 1}, she first applies Ry(x̃ · π
2 ) to her qubit and then measures it in

the computational basis. If Bob receives ỹ ∈ {0, 1}, he first applies Ry((−1)ỹ · π
4 ) to his qubit

and then measures it in the computational basis.
If one goes through the straightforward calculations, one can see that the winning probability

will be given by
cos2

(
π

8

)
= 1

2 + 1
2
√

2
≈ 85%.

This shows that using quantum strategies, we can indeed outperform the bound for classical
strategies. Let us pause for a moment and think about the consequences of this. If we observe two
players achieving a winning probability that exceeds 75%, we can be sure that their correlations
cannot be described by classical physics. In other words, we can expect the presence of quantum
entanglement in their strategy, assuming that no physical theory beyond quantum mechanics
describes our reality, as such physical theories may also allow for better-performing strategies.

The above strategy henceforth leads to the inequality ωq(GCHSH) ≥ 1
2 + 1

2
√

2 . One can, in fact,
even show that no other quantum strategy can outperform this bound, i.e., ωq(GCHSH) ≤ 1

2 + 1
2
√

2 ,
which is well known as Tsirelson’s bound [Cir80]. Consequently, we conclude

ωq(GCHSH) = 1
2 + 1

2
√

2
≈ 85%.

Before moving on to the next section, we would like to briefly provide an outlook on results
related to the CHSH game, which form the foundation for many cryptographic applications.
However, we will only touch on the surface of these theorems, as this thesis does not aim to
provide a comprehensive introduction to these results.

Earlier, we presented an optimal quantum strategy to win the CHSH game with the highest
possible probability ωq(GCHSH) = 1

2 + 1
2
√

2 ≈ 85%. An important task now is to classify optimal
quantum strategies to better understand these nonlocal games from a theoretical perspective. In
the CHSH game, there are, obviously, infinitely many optimal strategies because the two players
can add a Hilbert space to their respective quantum systems and act trivially on it. Alternatively,
they could start with a different quantum state, which can arise by applying single-qubit unitaries
to both qubits of an EPR pair, allowing the players to undo these transformations during the
game. Without getting too formal, one can show that these are the only two operations that
can produce other optimal strategies. That is, any optimal strategy can be expressed in this
way—by taking the strategy presented earlier and applying the two operations described above.
This shows that optimal quantum strategies for GCHSH are essentially unique. This property is
known as the rigidity property of the CHSH game or, alternatively, stated as the EPR pair state
being self-tested by playing the CHSH game. The history of self-testing goes back to Popescu
and Rohrlich, who characterized the optimal quantum strategies for GCHSH [PR92].

One can go even further by analyzing quantum strategies that are not optimal but are
close to optimal. If the winning probability of a quantum strategy in GCHSH is close to the
quantum value ωq(GCHSH), then one can show that the strategy itself is close to one of the
optimal quantum strategies presented earlier. While we will not formally define what ‘closeness’
means between two strategies, this closeness implies that the joint quantum state is in some
sense close to the EPR pair with respect to the regular norm. This concept is referred to as the
robustness of the CHSH game. A proof for this is given in [MYS12].
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Finally, we emphasize that there are also other types of strategies commonly studied in
the nonlocal game community. We will introduce one final strategy that generalizes quantum
strategies and will be necessary to state one of our main results later in Section 6.3.1.

To do so, we briefly digress into functional analysis involving infinite-dimensional Hilbert
spaces H. A linear operator f ∈ Lin(H) is called bounded if there exists some C > 0 such that
∥f(x)∥ ≤ C for all unit-norm vectors x ∈ H. We denote the set of bounded linear operators
f : H → H by B(H). It is well known in functional analysis that the adjoint exists for every
bounded linear operator. Another well-known theorem in functional analysis states that if H
is finite-dimensional, then every linear operator f ∈ Lin(H) is automatically bounded; that is,
B(H) = Lin(H). This observation allows us to extend the definition of a POVM provided earlier
in Section 2.1 to the infinite-dimensional case. A POVM is defined exactly as before, with the
additional assumption that the operators are bounded.

Let us now describe the next type of strategy.

Definition 6.6 (Commuting Operator Strategy). A commuting operator strategy for a nonlocal
game G consists of the following:

• A (possibly infinite-dimensional) Hilbert space H.

• A pure quantum state |ψ⟩ ∈ H.

• For every x ∈ IA, a POVM {Axa}a∈OA
acting on H with outcomes a ∈ OA.

• For every y ∈ IB, a POVM {Byb}b∈OB
acting on H with outcomes b ∈ OB.

Moreover, we require that AxaByb = BybAxa for all x ∈ IA, a ∈ OA, y ∈ IB, b ∈ OB.

Here, we have p(a, b|x, y) = ⟨ψ|AxaByb |ψ⟩. The motivation for this definition arises from
the fact that the no-communication assumption can be modeled in two ways:

1. Spatially separating the players so that they act on tensor product subsystems.

2. Requiring that the players’ actions commute on the joint system.

In the finite-dimensional case, these conditions are equivalent; however, in the infinite-dimensional
case, they are not. This discrepancy motivates the study of commuting operator strategies. Note
that every quantum strategy is also a commuting operator strategy.

The value of a nonlocal game using commuting operator strategies is defined similarly to the
quantum strategy case.

Definition 6.7 (Commuting Operator Value). Let G be a nonlocal game, and denote the set of
commuting operator strategies for G by S. Then, the commuting operator value of G is given by

ωqc(G) := sup
S∈S

ω(G, S).

Based on our previous observations, the following inequalities are evident:

ωc(G) ≤ ωq(G) ≤ ωqc(G).
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6.2 The KLVY Transformation
In the previous section, we formally defined nonlocal games with multiple players and a referee.
In this section, we discuss how to transform nonlocal games into an interactive protocol involving
a single computationally bounded player and one referee. In this context, the player and referee
are typically referred to as the prover and verifier, respectively. We refer to a generic procedure
for converting any nonlocal game into a single-prover protocol as a compiler. The first such
compiler was introduced by Kalai, Lombardi, Vaikuntanathan, and Yang (KLVY) in [KLVY23].

One motivation for building such a compiler is that, in practice, the assumption that players
do not communicate is difficult to enforce. In a single-prover protocol, however, this assumption
is trivially satisfied. In a nonlocal game, the players are computationally unbounded, whereas in
the compiled game produced by the KLVY compiler, the prover is computationally bounded.
This computational assumption is important for emulating spatial separation (i.e., the no-
communication assumption), which will become clearer later, when we describe the KLVY
compiler.

Spatial separation is not the only reason to consider compilers. Recall from the previous
section that the CHSH game provided a way to classically verify whether two players demonstrate
quantum behavior by observing their winning probability. In the jargon of quantum cryptography,
this is referred to as classically testing two quantum devices, meaning that the devices claim to be
quantum, and a classical verifier can confirm this by interacting with them and observing behavior
that cannot be explained classically. For example, surpassing the 75% winning probability in
the CHSH game demonstrates quantum behavior, assuming no physical theory exists beyond
quantum mechanics. Extending this concept to a scenario involving only one quantum device
requires new protocols, which are collectively referred to as Proofs of Quantumness. The KLVY
compiler offers such a proof of quantumness by transforming the CHSH game into a single-prover
protocol [KLVY23]. In fact, this approach works for any nonlocal game where the classical value
is strictly smaller than the quantum value. The reasons for this will also become clearer later.
Furthermore, a subsequent work by Natarajan and Zhang [NZ23] leveraged this compiler to
develop a new protocol for the Classical Verification of Quantum Computations.

As these applications demonstrate, compilers provide a modular framework for constructing
quantum cryptographic protocols. Researchers can focus on the information-theoretic multi-
player setting, which is typically simpler and well-studied, and then compile these nonlocal
games into single-prover protocols. The established theorems about the compiled games will
take care of the rest.

We now turn to the description of the KLVY compiler, which also provides a better under-
standing of our compiler presented in Section 6.3. The central component of the KLVY compiler
is a so-called quantum homomorphic encryption scheme. For the sake of self-containedness, we
present the definition here; however, the primary reason is that the author feels some pressure
from the imaginary reader, who is excited to know more about it and expects the definition due
to its appearance in the title of the thesis. This definition is taken from [NZ23], a subsequent
work based on the original work of [KLVY23]. The reason for taking the definition from [NZ23]
is that it has been rephrased using terms that already align with our notation and definitions.
We emphasize that the definition is solely needed to understand the KLVY compiler and will
not be used in any form for our compiler presented later.
Definition 6.8 (Quantum Homomorphic Encryption [NZ23, Definition 5]). A quantum homo-
morphic encryption (QHE) scheme QHE = (Gen,Enc,Eval,Dec) for a class of quantum circuits
C is a tuple of algorithms with the following syntax:
• Gen is a PPT algorithm that takes as input the security parameter 1λ and outputs a (classical)

secret key sk of poly(λ) bits;
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• Enc is a PPT algorithm that takes as input a secret key sk and a classical input x, and outputs
a ciphertext ct;

• Eval is a QPT algorithm that takes as input a tuple (C, |Ψ⟩ , ctin), where C : H× (C2)⊗n →
(C2)⊗m is a quantum circuit, |Ψ⟩ ∈ H is a quantum state, and ctin is a ciphertext corresponding
to an n-bit plaintext. Eval computes a quantum circuit EvalC(|Ψ⟩ ⊗ |0⟩⊗poly(λ,n) , ctin) which
outputs a ciphertext ctout. If C has classical output, we require that EvalC also has classical
output.

• Dec is a QPT algorithm that takes as input a secret key sk and ciphertext ct, and outputs
a state |ϕ⟩. Additionally, if ct is a classical ciphertext, the decryption algorithm outputs a
classical string y.

We require the following two properties from (Gen,Enc,Eval,Dec):

• Correctness with auxiliary input: For every security parameter λ ∈ N, any quantum
circuit C : HA×(C2)⊗n → {0, 1}∗ (with classical output), any quantum state |Ψ⟩AB ∈ HA⊗HB,
any message x ∈ {0, 1}n, any secret key sk ← Gen(1λ) and any ciphertext ct ← Enc(sk, x),
the following states have negligible trace distance:

Game 1. Start with (x, |Ψ⟩AB). Evaluate C on x and register A, obtaining classical string y.
Output y and the contents of register B.

Game 2. Start with ct← Enc(sk, x) and |Ψ⟩AB. Compute ct′ ← EvalC(· ⊗ |0⟩poly(λ,n) , ct) on
register A. Compute y′ = Dec(sk, ct′). Output y′ and the contents of register B.

In words, “correctness with auxiliary input” requires that if QHE evaluation is applied to a
register A that is a part of a joint (entangled) state in HA ⊗HB, the entanglement between
the QHE evaluated output and B is preserved.

• IND-CPA security against quantum distinguishers: For any two messages x0, x1 and
any QPT adversary A:∣∣∣∣∣Pr

[
AEncsk(·)(ct0) = 1

∣∣∣∣∣ sk← Gen(1λ)
ct0 ← Enc(sk, x0)

]

−Pr
[
AEncsk(·)(ct1) = 1

∣∣∣∣∣ sk← Gen(1λ)
ct1 ← Enc(sk, x1)

]∣∣∣∣∣ ≤ negl(λ).

A quantum fully homomorphic encryption (QFHE) scheme is a QHE scheme for the class of all
poly-size quantum circuits.

In simple terms, this describes an encryption scheme that allows quantum circuits to be
applied to messages that are encrypted without requiring them to be decrypted first. The
authors of [KLVY23] identify two schemes, presented in [Mah18a, Bra18], that satisfy their QHE
definition under the assumption of the hardness of the learning with errors (LWE) problem.
Notably, these two schemes even satisfy the QFHE definition.

The KLVY compiler transforms any two-player nonlocal game into a two-round protocol,
where the basic idea is as follows: In the first round, the prover simulates the computation
of the first player. In the second round, the prover simulates the computation of the second
player. To emulate spatial separation—meaning that the answer in the second round should not
depend on the first round—the question for the first player is encrypted, which then in turn
uses the security of the encryption scheme. To enable the simulation of the computation in the
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first round, the encryption scheme must be appropriately homomorphic, allowing the player to
compute on the encrypted question. Hence, a secure QHE will heuristically handle all potential
issues.

The formal description proceeds as follows. In the KLVY compiler, a quantum homomorphic
encryption scheme QHE = (Gen,Enc,Eval,Dec) is fixed for a class of quantum circuits C, which
includes all quantum circuits the first player would have used in the nonlocal game. The compiler
then transforms any two-player nonlocal game G into a computationally bounded single-prover
interactive protocol Gcomp (associated with the security parameter λ) with a classical verifier,
defined as follows:

• The verifier samples two questions (x, y) from the underlying (two-player) nonlocal game,
generates a secret key sk← Gen(1λ), and sends an encryption of Alice’s question Enc(sk, x)
to the prover.

• The prover responds to the verifier with an encrypted answer α, which can be thought
of as Enc(a). In the honest case, this would homomorphically evaluate Alice’s quantum
circuit.

• The verifier decrypts α to recover a, then sends y to the prover in plaintext.

• The prover outputs a response b. In the honest case, this corresponds to Bob’s response.

• The verifier holds a transcript (a, b, x, y) and determines whether the prover wins by
evaluating the predicate of the nonlocal game.

Note that this compiled game consists of the same question sets, answer sets, question sampling
probability distribution, and verification function. Moreover, the Eval algorithm from the QHE
scheme is not explicitly used in the protocol itself. However, it is utilized when transforming a
general strategy for a nonlocal game into a strategy for the compiled game. Notably, the compiler
also works for the general case of compiling k-player nonlocal games by simply performing the
same procedure for k rounds. Specifically, it encrypts the questions of the first (k − 1) players
under different keys and proceeds as described above for each player that needs to be simulated.

To analyze such a single-prover interactive game between a PPT verifier and a prover, both of
which take as input the security parameter in unary 1λ, we adopt the definitions of the classical
CS value and the quantum CS value of a single-prover protocol from [NZ23], originally derived
from [KLVY23, Definition 3.1]. However, we refer to these simply as the classical value and the
quantum value, which, as is clear from the context, will not be confused with the value of the
corresponding nonlocal game.

Definition 6.9 ([NZ23, Definition 19]). A single-prover interactive protocol G, specified by an
interactive verifier Turing machine V , has classical CS value ≥ ω if and only if there exists an
interactive PPT Turing machine P such that for every λ ∈ N,

Pr
[
⟨P, V ⟩(1λ) = 1

]
≥ ω,

where the probability is taken over the random coin tosses of V , and where ⟨P, V ⟩ denotes the
output bit of V (1λ) after interacting with P .

Definition 6.10 ([NZ23, Definition 20]). A single-prover interactive protocol G, specified by an
interactive verifier Turing machine V , has quantum CS value ≥ ω∗ if and only if there exists an
interactive QPT Turing machine P such that for every λ ∈ N,

Pr
[
⟨P, V ⟩(1λ) = 1

]
≥ ω∗,
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where the probability is taken over the random coin tosses of V , and where ⟨P, V ⟩ denotes the
output bit of V (1λ) after interacting with P .

The work in [CMMNP+24] defined the latter quantity more concretely by specifying what a
quantum strategy S for the KLVY-compiled game Gcomp is, and expressed the winning probability
ωq(Gcomp, S) as a formula similarly to Eq. (6.1). We omit this definition here but use this notation
as it is more concise and aligns better with the results we will present later. However, we include
a similar definition tailored to the case of our compiler in Section 6.3.

One of the main results in [KLVY23] regarding the compiled game Gcomp is as follows, using
the above notation:
Theorem 6.11 ([KLVY23, Theorem 3.2]). Let G be a two-player nonlocal game, and let Gcomp
be the compiled game under the KLVY compiler. Then the following two statements hold:
1. For every quantum strategy S for G, there exists a quantum strategy Scomp for Gcomp such

that the following inequality holds

ωq(Gcomp, Scomp) ≥ ωq(G, S)− negl(λ).

2. The classical value of Gcomp is at most ωc(G) + negl(λ).
The first statement, which we refer to as quantum completeness, can, loosely speaking, be

achieved by running the strategy S sequentially, i.e., evaluating Alice’s circuit on the encrypted
question using the homomorphic property of the QHE, and then performing Bob’s circuit in the
clear on the remaining state. The second statement, which we refer to as classical soundness,
can, loosely speaking, be achieved by considering any single classical prover in the compiled
game and constructing two provers for the nonlocal game by rewinding the classical prover.
This approach crucially relies on the prover being classical rather than quantum (because of
the no-cloning theorem). Spatial separation is then ensured by the security of the encryption
scheme.

Thus, the compiler preserves the gap (if it exists) between the classical value ωc(G) and the
quantum value ωq(G), meaning that, in the compiled game, we can also distinguish a classical
prover from a quantum prover by observing the winning probability. This result enables the
production of a wide variety of protocols for proofs of quantumness for a single device by
compiling nonlocal games where ωc(G) < ωq(G), as noted in [KLVY23].

However, the authors of [KLVY23] did not establish any results regarding quantum soundness;
that is, they could not bound the winning probability of a QPT prover in the compiled game in
terms of the values of the underlying nonlocal game.

Subsequently, the work in [NZ23] established such a quantum soundness result for the
compiled CHSH game, allowing them to produce a new protocol for the classical verification of
BQP using a QFHE scheme as a black box. Loosely speaking, this was achieved by compiling
the two-device protocol of Grilo from [Gri19] using the KLVY transformation. Furthermore, a
more recent study presented a protocol with a succinct verifier [MNZ24], improving upon prior
work [BKLMM+22], which relied on stronger cryptographic assumptions.

Further works in [CMMNP+24, BVBDM+24, MPW24] established similar results for more
general classes of nonlocal games, the so-called XOR games. An XOR game is a restricted type
of nonlocal game where the answers are bits, and the verification function checks whether the
XOR of the answers equals some function f applied to the questions as input. The CHSH game
is an example of an XOR game, where f(x, y) := x · y.

Finally, in a recent work, [KMPSW24] established a bound on the quantum value of all
compiled nonlocal games. While in the other works mentioned so far the upper bound was given
by the quantum value ωq(G) of the underlying nonlocal game, in this paper, the upper bound
was given by the commuting operator value ωqc(G), as defined in Definition 6.7.
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6.3 A New Compiler
We now present the highlight of this thesis: Our novel compiler, which transforms nonlocal
games into an interactive protocol involving a single computationally bounded player and provide
proofs for quantum completeness and quantum soundness. For simplicity, we focus on the special
case of two-player nonlocal games. However, our compiler can be straightforwardly adapted
to k-player nonlocal games, similar to [KLVY23]. Conceptually, our compiler shares the same
structure as the KLVY compiler. However, we employ distinct cryptographic primitives, which
can be constructed from different cryptographic assumptions, as explained in Section 3.2.

In the KLVY compiler, the primary cryptographic primitive is a QHE scheme, which ensures
a form of ‘blind computation’. We extend this vague idea by replacing the QHE scheme with the
CHBQC protocol introduced in Section 5.2.

To illustrate how our compiler works, let

G = {Gλ}λ∈N = {Iλ,A, Iλ,B,Oλ,A,Oλ,B, µλ, Vλ}λ∈N

be a family of two-player nonlocal games indexed by the security parameter. Additionally,
consider the family of unitaries

U = {Uλ}λ∈N = {Uλ,x}λ∈N,x∈Iλ,A
,

where {Uλ,x}x∈Iλ,A
represents the unitaries corresponding to Alice’s strategy for the game Gλ.

To use the CHBQC protocol, these unitaries must be expressed as measurement patterns.
Without loss of generality, for any given λ, we assume the measurement patterns for all Uλ,x

have the same size. This can be achieved by padding smaller patterns with identities (i.e.,
zero measurement angles) to match the size of the largest pattern. We emphasize that this
measurement pattern is known to both the verifier and the prover because the prover provides it
to the verifier to follow his strategy.

Given the security parameter in unary 1λ, the prover and verifier execute the following
interactive protocol:

• The verifier samples a question pair (x, y)← µλ.

• The verifier and prover engage in the CHBQC protocol. The verifier’s input is Uλ,x, while
the prover’s state |ψ⟩ is arbitrary. Let a′ denote the prover’s output, and let a be the
verifier’s output derived from a′.

• The verifier sends y to the prover in plaintext.

• The prover responds with some b.

• The verifier accepts if a ∈ Oλ,A, b ∈ Oλ,B, and Vλ(a, b|x, y) = 1.

Notably, step two is the only aspect that differs from the KLVY compiler, where we substitute
the QHE scheme with our CHBQC protocol. For the nonlocal game G, we use Gcomp to denote
the compiled game, even though this notation was previously used for the KLVY compiler. It is
clear from the context which compiler is used. Note that the verifier is, in some sense, blindly
operating on ‘half’ of the quantum state held by the prover, motivating the name for our HBQC
protocol, as can be clearly seen in the example provided in Section 6.4.

When we say we compile a nonlocal game G, we mean compiling a family of nonlocal games
where all games are identical to G, i.e., Gλ = G. We also refer to this as a constant game.

As in the case of nonlocal games, we will define how a general quantum strategy can be
described for an efficient prover.
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Definition 6.12 (QPT Strategy). A QPT strategy for a family of compiled games G = {Gλ}λ is
a QPT algorithm {Wλ}λ. The quantum prover behaves as follows: When receiving the question
y ∈ Iλ,B, the prover applies Wλ to |y⟩ along with the post-measurement state of the CHBQC
protocol. The prover measures a suitable number of qubits and responds with the measurement
outcome b.

We could also have used POVMs as in the definition of a quantum strategy for nonlocal
games in Definition 6.4; however, we stick to this definition as the QPT assumptions are easier
to state in this way. Moreover, the prover’s behavior can be modeled by POVMs {Bλ

yb}b∈Oλ,B
,

where
Bλ

yb = (⟨b| ⊗ I)W †λ(|y⟩ ⟨y| ⊗ I)Wλ(|b⟩ ⊗ I).

Lastly, for a QPT strategy S in the compiled game, we denote the winning probability, when
playing the game Gλ, as ωλ(Gcomp, S).

6.3.1 Quantum Completeness

Now, we will prove the quantum completeness of our compiler.

Theorem 6.13 (Quantum Completeness). Let G be any two-player nonlocal game, and let Gcomp
be the compiled game under our compiler. For every quantum strategy S for G, there exists a
QPT strategy Scomp for Gcomp such that the following inequality holds

ωλ(Gcomp, Scomp) ≥ ωq(G, S)− negl(λ).

Proof. To describe the QPT strategy Scomp, assume that in the nonlocal game, the quantum
strategy uses the quantum state |ψ⟩ along with Alice’s unitaries {Ux}x∈IA

. In the compiled game,
the single prover uses this quantum state together with these unitaries in the CHBQC protocol
during step two of the game. After the CHBQC protocol, the single prover applies Bob’s unitary
to the remaining qubits of the original |ψ⟩ state and proceeds as Bob would in the nonlocal
game. If the CHBQC protocol does not abort (which happens with negligible probability, as our
blind RSP protocol succeeds with probability 1− negl(λ)), the output statistics of a and b of the
single prover are exactly the same as in the nonlocal game, by the correctness of the CHBQC
protocol. Therefore, this QPT strategy succeeds with probability at least ωq(G, S)− negl(λ).

We refer to Section 6.4 for a more detailed explanation of the single-prover construction.

6.3.2 Quantum Soundness

Now, we will prove the quantum soundness of our compiler.

Theorem 6.14 (Quantum Soundness). Let G be any two-player nonlocal game, and let Gcomp
be the corresponding compiled game under our compiler. Let S be any QPT strategy for Gcomp.
Then it holds that

lim sup
λ→∞

ωλ(Gcomp, S) ≤ ωqc(G).

The quantum soundness of the KLVY compiler for constant games was established in
[KMPSW24]. The statement is identical to our above theorem, except that Gcomp refers to the
compiled game under the KLVY transformation. To prove the above theorem, we do not need
to do much since we can leverage many results from previous works in [NZ23, KMPSW24]. We
only need to reprove the theorems where the security properties of the QHE scheme are used
and replace them with the computational blindness properties of this compiler.
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Let σλ
x,a denote the (subnormalized) state of the prover after executing the CHBQC protocol

with security parameter λ, corresponding to the verifier’s output a ∈ Oλ,A, and conditioned on
the protocol’s input being x ∈ Iλ,A. By the computational blindness of the CHBQC protocol
(Theorem 5.7), we can immediately deduce the following.

Lemma 6.15. For all x, x′ ∈ Iλ,A and any family of QPT-implementable POVMs {Mλ, I −
Mλ}λ∈N, there exists a negligible function negl such that for all λ ∈ N it holds that:∣∣∣∣∣∣

∑
a∈Oλ,A

tr(σλ
x,aMλ)−

∑
a∈Oλ,A

tr(σλ
x′,aMλ)

∣∣∣∣∣∣ ≤ negl(λ). (6.2)

For the case of constant games, quantum soundness of the compiler can be proven using the
same analysis as in [KMPSW24]. The only step that has to be slightly generalized is that [NZ23,
Lemma 8] has to be proven for more general states of the form

σλ
x :=

∑
a∈Oλ,A

σλ
x,a,

instead of states of the form

ρλ
x := E

c1,...,cm=Enc(xλ)

∑
α1,...,αm

(Ac1
λ,α1

)⊗ · · · ⊗ (Acm
λ,αm

)(|ψλ⟩ ⟨ψλ|)⊗m(Ac1
λ,α1

)† ⊗ · · · ⊗ (Acm
λ,αm

)†,

where A denotes Alice’s POVM in the KLVY compiler (we refer to [KMPSW24] for precise
definitions of these operators). This generalization will be proven now.

Lemma 6.16 ([NZ23, Lemma 8]). Let λ ∈ N be a security parameter. For any two efficiently
sampleable distributions {Dλ,1}, {Dλ,2} over plaintext Alice questions, for any efficiently prepara-
ble state σλ

x (where σλ
x arises from this new compiler), and for any two-outcome measurement

{Mλ, I −Mλ} that can be implemented by a circuit with size poly(λ) acting on m = poly(λ)
copies of σλ

x , there exists a negligible function negl(λ) such that, for all λ ∈ N it holds that∣∣∣∣∣ E
x←Dλ,1

tr((σλ
x)⊗mMλ)− E

x←Dλ,2
tr((σλ

x)⊗mMλ)
∣∣∣∣∣ ≤ negl(λ). (6.3)

Proof. Note that the statement can be reduced to Lemma 6.15 by a simple hybrid argument.
Let {Mλ, I −Mλ} be a two-outcome measurement that can be implemented by a circuit with
size poly(λ) acting on m copies of σλ

x such that Ineq. (6.3) does not hold, i.e.

mλ :=
∣∣∣∣∣ E
x←Dλ,1

tr((σλ
x)⊗mMλ)− E

x←Dλ,2
tr((σλ

x)⊗mMλ)
∣∣∣∣∣ > negl(λ).

Then we can construct a two-outcome measurement {Nλ, I −Nλ} that can be implemented by
a circuit with size poly′(λ) acting on σλ

x such that Ineq. (6.2) does not hold as follows. Given
input σλ

x with x← Dλ,1 or x← Dλ,2, choose an index i ∈ {1, . . . , poly(λ)} uniformly random,
prepare the state (σλ

x1)⊗i−1 ⊗ (σλ
x)⊗ (σλ

x2)⊗poly(λ)−i where x1 ← Dλ,1 and x2 ← Dλ,2, and apply
Mλ to this prepared state. Then, we have∣∣∣∣∣ E

x←Dλ,1
tr(σλ

xNλ)− E
x←Dλ,2

tr(σλ
xNλ)

∣∣∣∣∣
= 1

poly(λ)

∣∣∣∣∣
poly(λ)∑

i=1
E

x1←Dλ,1
E

x2←Dλ,2
tr((σλ

x1)⊗i ⊗ (σλ
x2)⊗poly(λ)−iMλ)
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− E
x1←Dλ,1

E
x2←Dλ,2

tr((σλ
x1)⊗i−1 ⊗ (σλ

x2)⊗poly(λ)−i+1Mλ)
∣∣∣∣∣

= 1
poly(λ)

∣∣∣∣∣ E
x←Dλ,1

tr((σλ
x)⊗poly(λ)Mλ)− E

x←Dλ,2
tr((σλ

x)⊗poly(λ)Mλ)
∣∣∣∣∣

≥ 1
poly∗(λ) .

This contradicts Lemma 6.15 for x← Dλ,1, x
′ ← Dλ,2.

Once this fact is established, the proofs of [NZ23, Lemma 15-17] (see also [CMMNP+24,
Lemma 2.21]) follows identically. This in turn is the only result in the proof of quantum
soundness [KMPSW24], where IND-CPA security of the QFHE scheme is used. By proving
[NZ23, Lemma 8] for this compiler, the following proposition—and consequently, the quantum
soundness of this proposed compiler for constant games—follows as an immediate corollary.

Proposition 6.17 ([KMPSW24, Proposition 4.6]). Consider any nonlocal game G and a
QPT strategy for the compiled game Gcomp (which is the same for all λ). Let x, x′ ∈ IA, and
let P = P ({Byb}) be a polynomial in noncommuting variables {Byb}y∈IB ,b∈OB

. Then there exists
a negligible function η such that, for all λ ∈ N,∣∣∣∣∣tr (σλ

x P ({Bλ
yb})

)
− tr

(
σλ

x′ P ({Bλ
yb})

)∣∣∣∣∣ ≤ η(λ),

and where {Bλ
yb}b∈OB

are POVMs for y ∈ IB, corresponding to the measurements that lead to
the prover’s second reply.

6.4 Compiling the CHSH Game
In this section, we provide a concrete transformation of our compiler applied to the famous
CHSH game GCHSH described earlier in Section 6.1. Recall that the two players share an EPR
pair

|ψ⟩ := 1√
2

(|00⟩+ |11⟩),

i.e., Alice has the first qubit, and Bob has the second. Alice’s action is described by applying the
unitary Ax̃ := Ry(x̃ · π

2 ) to her qubit upon receiving x̃ ∈ {0, 1}, followed by a measurement in the
computational basis. Similarly, if Bob receives ỹ ∈ {0, 1}, he first applies Bỹ := Ry((−1)ỹ · π

4 ) to
his qubit and then measures it in the computational basis.

To engage in the CHBQC protocol, we must first provide a measurement pattern for Alice’s
unitaries, which can be derived from the discussion of Lemma 4.7 and are illustrated in Figs. 6.3
and 6.4.

0 0 0 0

Figure 6.3: Implementation of A0 = I.

-π
2

π
2

π
2 0

Figure 6.4: Implementation of A1 = Ry(π
2 ).

To describe the compilation process, we will use the more ‘qubit-optimized’ version already
mentioned in Section 5.1. In this version, instead of introducing eight additional layers, we
introduce only two. This means we transition from G1×5 to G1×7 instead of G1×13. Every
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subsequent step is essentially the same as in the ‘non-optimized’ version, providing the same
level of insight but saving time.

We are now ready to describe the compiled CHSH game. The measurement pattern is known
to both the verifier and the prover. Both parties have the security parameter in unary 1λ as
input and the prover prepares the state |ψ⟩ = 1√

2(|00⟩+ |11⟩).

• The verifier samples two questions (x̃, ỹ) ∈ {0, 1}2 uniformly at random.

• The verifier and the prover engage in the CHBQC protocol (Section 5.2). The verifier’s
input is the measurement pattern of Ax̃, and the prover’s input is the first qubit of his
EPR pair. Executing the CHBQC protocol proceeds as follows: The prover creates two |+⟩
states and then interacts with the verifier in the blind RSP protocol four times to prepare
four qubits in the prover’s possession. These qubits are in the state Zti |+θi

⟩ = |+θi+tiπ⟩,
where ti ∈ {0, 1} and θi ∈ Θ are known to the verifier for 1 ≤ i ≤ 4. The prover then
entangles these qubits according to G1×7, as illustrated in Fig. 6.5, where the blue circle in
the figure represents the first qubit of the EPR pair.

|+⟩ |+θ1+t1π⟩ |+θ2+t2π⟩ |+θ3+t3π⟩ |+θ4+t4π⟩ |+⟩

Figure 6.5: The prover entangles his qubits according to G1×7.

They now proceed through the Computation phase using a measurement pattern that
consists of a measurement angle of zero for the first two qubits, concatenated with the
pattern of Ax̃ for the last five qubits. After the Computation phase in the CHBQC protocol,
the prover holds two qubits in the state(

XsX
1,7ZsZ

1,7 ⊗ I
)

(Ax̃ ⊗ I) |ψ⟩ ,

where sX
1,7 ∈ {0, 1} and sZ

1,7 ∈ {0, 1} are known to the verifier. The prover then measures
the first qubit in the computational basis, obtaining the outcome a′ ∈ {0, 1} and sending
it to the verifier. The verifier computes a := sX

1,7 ⊕ a′.

• The verifier sends ỹ to the prover in plain.

• The prover applies Bỹ to the second qubit, measures it in the computational basis, obtains
the outcome b, and sends it to the verifier.

• Lastly, the verifier computes V (a, b|x̃, ỹ).

This example beautifully illustrates that the verifier takes over the role of Alice (and that of the
referee) by knowing which unitary operation to apply to the respective qubits, as in the original
game. The second step (the second bullet point) can be conceptually understood as the prover
sending the first qubit to the verifier, who then applies Alice’s corresponding unitary operation
and measures it, just as Alice would in the nonlocal game. At this point, the quantum state of
the prover equals that in the original game. When the verifier sends the second question to the
prover, the prover can apply Bob’s unitary operation and respond with the same answer that
Bob would provide.
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6.5 Comparison
In this section, we compare our compiler with the KLVY compiler. For this analysis, we consider
only constant games, i.e., Gλ = G for some fixed nonlocal game G. Let Ux denote the unitaries
corresponding to Alice’s strategy for the game G, dependent on the question x. Since we are
considering constant games, the measurement pattern implementing Ux is also independent of λ,
i.e., the dimensions of the brickwork state remain constant with respect to λ.

We now investigate the round complexity with respect to the security parameter λ. The
KLVY compiler runs in 2 rounds, independent of the security parameter, resulting in a round
complexity of O(1). To analyze the round complexity of our compiler, we note that the blind
RSP protocol in Section 3.3 consists of six rounds with a probability of successful termination
equal to 1

64 . Let c > 0 be any constant. By repeating the protocol ⌊λc⌋ times, we can boost the
success probability to 1− negl(λ). Consequently, the number of rounds increases to O(λc). As
the brickwork state consists of O(1) qubits, the State Preparation phase in the CHBQC protocol
requires O(λc) rounds, while the Computation phase consists of O(1) rounds. This results in an
overall round complexity of O(λc). Thus, the KLVY compiler is more efficient than our compiler
in terms of round complexity. Since the round complexity of our compiler is determined by
the round complexity of the blind RSP protocol it uses, this is the component that requires
improvement.

Regarding the (classical) computational overhead of the verifier, in our compiler, it grows
with the size of the (quantum) computation performed by the prover, which is, however,
independent of λ. The above observation, however, indicates that the verifier might perform
specific computations multiple times depending on λ. This is not a significant concern, as in the
Computation phase of the CHBQC protocol, only simple arithmetic calculations are required to
update the measurement angles and outcomes, which remain constant for fixed games. During
the blind RSP protocol, the verifier must call Invert a total of O(λc) times. Compared to the
quantum computations involved, and given the current advancements in classical computing, this
is likely to be a minor concern, although still important to consider. In the KLVY compiler, there
is only one call to the encryption scheme Enc, which does not pose any problem, as encryption
schemes are built very efficiently nowadays.

Next, we compare the number of ancilla qubits required to perform the compiled game. By
ancilla qubits, we mean the additional qubits needed beyond those used to prepare the shared
state |ψ⟩, as both compilers are designed such that, in both transformations, the prover prepares
|ψ⟩. In [KLVY23], no concrete analysis is provided for general compiled games, only for the
compiled CHSH game. In that context, the number of ancilla qubits is upper-bounded by the
number of bits required to represent the elements in the domain and range of the underlying
TCF in Mahadev’s QFHE scheme, i.e., O(log |D|+ log |R|), where D is the domain and R is
the range of the TCF (both implicitly dependent on λ). This is because the Mahadev QFHE
scheme creates a uniform superposition over the TCF domain and evaluates the function in
superposition. The same is true in our case. The only qubits required in our compiler are those
for the brickwork state, which are O(1), and those used in the computation within the blind
RSP protocol, exactly as in the KLVY case.

We now turn to the modularity of the two compilers. As seen earlier, the KLVY compiler
works for any QFHE scheme, as its results are based on a black-box QHE scheme. Our compiler
uses, in some sense, two black-box cryptographic primitives: It is built from a black-box blind
RSP protocol, satisfying Definition 3.1, which, in turn, is constructed in Section 3.3 from a
black-box plain TCF. Thus, our approach provides a highly modular framework for instantiating
the compiler. Additionally, as discussed in Section 3.2, there exist various constructions based on
diverse computational assumptions to implement TCFs. This flexibility allows our compiler to
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be implemented using, for instance, post-quantum assumptions in isogeny-based cryptography.
We now compare the cryptographic assumptions. The KLVY compiler relies on the existence

of a QHE scheme, which must be defined over the class of quantum circuits C corresponding to
the quantum circuits Alice would use in the two-player nonlocal game. For practical reasons, it is
desirable to use a single QHE scheme for the compilation process, rather than switching schemes
depending on the nonlocal game and the quantum strategy to be compiled. Thus, it is reasonable
to assume that the QHE should indeed be a QFHE, which, however, makes it potentially
more challenging to instantiate the compiler based on other cryptographic assumptions. While
this is technically incomparable with the existence of TCFs, we can discuss concrete instances
to compare the underlying computational assumptions. To the best of our knowledge, there
are two approaches to building QFHE schemes (with a classical client): One assuming the
hardness of the learning with errors (LWE) problem [Mah18a, Bra18], and another assuming
the existence of indistinguishability obfuscation plus any dual-mode TCF [GV24]. As the
latter work was published during the preparation of this thesis, the author has not explored
Gupte and Vaikuntanathan’s work in detail to determine whether their QFHE scheme satisfies
the correctness with auxiliary input property given in Definition 6.8. This indeed requires
justification, similar to how the authors of [KLVY23] had to justify that Mahadev’s QFHE
satisfies this property. Thus, prior to our work, compiled nonlocal games were known to exist
under at most either of these two sets of assumptions. For a discussion of the cryptographic
assumptions for our compiler, see Section 3.2.

Lastly, we discuss the properties that the compilers satisfy in terms of the value of the
compiled game. Both compilers satisfy the properties of quantum completeness and quantum
soundness. However, the KLVY compiler also satisfies the classical soundness property, which
enables certain nonlocal games to be compiled into proof of quantumness protocols, as explained
in Section 6.2. Whether our compiler satisfies classical soundness remains an open problem for
future work.
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