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We saw in the last talk:

Every quadratic module (V, Q) has an orthogonal basis.
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We saw in the last talk:

Every quadratic module (V, Q) has an orthogonal basis.

Definition
Two orthogonal bases

e=(el,..,e) and e = (el, ..., e))

of V are called contiguous if they have an element in common (i.e. if there
exist i and j such that ; = ¢;.)

Reminder: We restricted ourselves to the case V is finite dimensional and
char(k) # 2.
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Let (V, Q) be a non-degenerate quadratic module of dimension n > 3, and let
e = (e1,...,e,) and € = (ey, ..., ;) be two orthogonal bases of V. Then there
exists a finite sequence e(o), e(l), . el™ of orthogonal bases of V such that
e® = e and e = ¢’ and e is contiguous with e for 0 < i< m.
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Let (V, Q) be a non-degenerate quadratic module of dimension n > 3, and let
e = (e1,...,e,) and € = (ey, ..., ;) be two orthogonal bases of V. Then there
exists a finite sequence e(o), e(l), . el™ of orthogonal bases of V such that
e® = e and e = ¢’ and e is contiguous with e for 0 < i< m.

Proof.

Case 1: (e, e1) - (ef, el) — (e1, e])> # 0.

This condition is equivalent to: P = ke; + ke; is a two dimensional
non-degenerate subspace of V.

From talk 4 we know there exist e and €5, s.t.

P = ke1 @ ke> and P = ke; & key.
Let H be the orthogonal complement of P with an orthogonal basis
(e3,...,€)); since P is non-degenerate, we have V = H& P. Then the

foIIowmg chain of orthogonal bases

i 1 / / i
e— (e, €,63,...,e5) = (e1, 6,65 ,...,6)) > €

does the job.

Kaniuar Bacho Rheinische Friedrich-Wilhelms-Universitat Bonn

Quadratic forms ov



Technical lemma
[e]e] o]

Case 2: (e1, e1) - (e}, €}) — (e1,€5)? # 0.
Same proof as above, just replace ef by e}.
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Case 2: (e1, e1) - (e}, €}) — (e1,€5)? # 0.

Same proof as above, just replace ef by e}.

Case 3: (e, e1) - (el,e]) — (e1,e/)> =0 for i =1,2.

Note that (e1, /) # 0 for i = 1,2, otherwise e; or e; would be a non-zero
element in rad(V) = 0.

First we will prove the following lemma:

There exists x € k s.t. ex = €| + xe5 is non-isotropic and generates with e a
non-degenerate plane.
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Case 2: (er,e1) - (&5, €5) — (e1,€)” # 0.
Same proof as above, just replace ef by e}.
Case 3: (e, e1) - (el,e]) — (e1,e/)> =0 for i =1,2.
Note that (e1, /) # 0 for i = 1,2, otherwise e; or e; would be a non-zero
element in rad(V) = 0.
First we will prove the following lemma:
There exists x € k s.t. ex = €| + xe5 is non-isotropic and generates with e a
non-degenerate plane.
We have (e, ex) = (e], 1) + x*(e}, e5). We must take x? distinct from
(e1 ep)
(e3,€5) "
(e1, e1) - {ex, &) — (e1, &x)? # 0. But the left hand side is —2x{e1, e{){e1, €5).
(e1 ep)
(e3,3) "

Moreover e, generates with e; a non-degenerate plane iff

Hence the conditions are equivalent to x # 0 and x* # —

Kaniuar Bacho Rheinische Friedrich-Wilhelms-Universitat Bonn

Quadratic forms ov



Technical lemma
[e]e] o]

Case 2: (er,e1) - (&5, €5) — (e1,€)” # 0.
Same proof as above, just replace ef by e}.
Case 3: (e, e1) - (el,e]) — (e1,e/)> =0 for i =1,2.
Note that (e1, /) # 0 for i = 1,2, otherwise e; or e; would be a non-zero
element in rad(V) = 0.
First we will prove the following lemma:
There exists x € k s.t. ex = €| + xe5 is non-isotropic and generates with e a
non-degenerate plane.
We have (e, ex) = (e], 1) + x*(e}, e5). We must take x? distinct from
(e1 ep)
(e3,€5) "
(e1, e1) - {ex, &) — (e1, &x)? # 0. But the left hand side is —2x{e1, e{){e1, €5).
(e1 ep)
(e3,3) "

Moreover e, generates with e; a non-degenerate plane iff

Hence the conditions are equivalent to x # 0 and x* # —

If |k| > 4, we are done with the lemma.
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Case 2: (er,e1) - (&5, €5) — (e1,€)” # 0.
Same proof as above, just replace ef by e}.
Case 3: (e, e1) - (el,e]) — (e1,e/)> =0 for i =1,2.
Note that (e1, /) # 0 for i = 1,2, otherwise e; or e; would be a non-zero
element in rad(V) = 0.
First we will prove the following lemma:
There exists x € k s.t. ex = €| + xe5 is non-isotropic and generates with e a
non-degenerate plane.
We have (e, ex) = (e], 1) + x*(e}, e5). We must take x? distinct from
(e1 ep)
(e3,€5) "
(e1, e1) - {ex, &) — (e1, &x)? # 0. But the left hand side is —2x{e1, e{){e1, €5).

Hence the conditions are equivalent to x # 0 and x* # — 2:}23?
2772

Moreover e, generates with e; a non-degenerate plane iff

If |k| > 4, we are done with the lemma.
The case |k| = 2 can not appear, since char(k) # 2.
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Case 2: (e1, e1) - (e}, €}) — (e1,€5)? # 0.

Same proof as above, just replace ef by e}.

Case 3: (e, e1) - (el,e]) — (e1,e/)> =0 for i =1,2.

Note that (e1, /) # 0 for i = 1,2, otherwise e; or e; would be a non-zero
element in rad(V) = 0.

First we will prove the following lemma:

There exists x € k s.t. ex = €| + xe5 is non-isotropic and generates with e a
non-degenerate plane.

We have (e, ex) = (e], 1) + x*(e}, e5). We must take x? distinct from

’ ’
- 221’3; Moreover e, generates with e; a non-degenerate plane iff
2772
(e1, e1) - {ex, &) — (e1, &x)? # 0. But the left hand side is —2x{e1, e{){e1, €5).
Hence the conditions are equivalent to x # 0 and x* # — 2:}2}?
2772

If |k| > 4, we are done with the lemma.
The case |k| = 2 can not appear, since char(k) # 2.
Let us investigate the case |k| = 3, so k = F3. As (e, &) # 0 we get

(e1, /) = 1. So the condition in case 3 is equivalent to (er, e1) - (¢/, /) = 1.
(erel) _

Hence — =
(ej.e3)

—1, so x = 1 does the job.
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Back to the origin problem, take x s.t. e, = e] + xe} is non-isotropic and
generates with e; a non-degenerate plane. Since e, is non-isotropic, there exists
&) s.t. (ex, el) is an orthogonal basis of ke{ @ kej. Consider the orthogonal
basis e’ = (ex, €, €3, ..., €7) of V, which is contiguous to e’. Now we are in
case 1 and can relate e to €”. O
We will see that this lemma is important to show the welldefinedness of a new
invariant that we will introduce.
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Recap the last talks

Let us take a look back at the results, that will be important in this talk.
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Quick reminder
o0

Recap the last talks

Let us take a look back at the results, that will be important in this talk.

Hilbert symbol
Let k denote R or Q, and a, b € k*. Then

(a,b) = 1, if 22 f'ax2 — by? = 0 has a non-trivial solution (x,y,2) € k3
—1, otherwise.

We saw the following identities:

(a, b) = (b, a), (a,c?) =1, (a, b) = (a, —ab), (a, bc) = (a, b)(a, c) and the
Hilbert symbol is non-degenerate (i.e. if (a, b) = 1 for all b, then a is a square
in kKX).

Kaniuar Bacho
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Recap the last talks

Solutions of quadratic forms

Let g = g(xi, ..., xn—1) be a non-degenerate quadratic form and let a € k*.
TFAE

(i) The form g represents a.

(i) We have g ~ h + ax?_;, where h is a form in n — 2 variables.

(iii) The form f = g—ax? represents 0.

Solutions of quadratic forms

Let g and h be non-degenerate forms of rank > 1 and f = g—h. TFAE
(i) The form f represents 0.

(i) There exists a € k* which is represented by g and h.

(i) There exists a € k* s.t. g—az? and h—az’ represents 0.
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Hasse invariant

From now on we will fix a prime number p, k = Q, and assume that all
quadratic modules are non-degenerate.

We already defined the discriminant d(Q) of a quadratic module (V, Q) of
rank n. It is an element in kx/kx2; let e = (ey, ..., 1) be an orthogonal basis
of V, then a; := (e, &) and d(Q) = a1 - - a, (in kx/kx2).

Definition
Now define e(e) =[]
(V, Q).

i< (ai,a;) € {—1,+1} to be the Hasse invariant of

Theorem

The number ¢(e) does not depend on the choice of the orthogonal basis e.

Proof. If n =1, we have ¢(e) = 1.
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Hasse invariant

From now on we will fix a prime number p, k = Q, and assume that all
quadratic modules are non-degenerate.

We already defined the discriminant d(Q) of a quadratic module (V, Q) of
rank n. It is an element in kx/kx2; let e = (ey, ..., 1) be an orthogonal basis
of V, then a; := (e, &) and d(Q) = a1 - - a, (in kx/kx2).

Now define e(e) = [[,_; (i, a;) € {—1,+1} to be the Hasse invariant of
(V, Q).

Theorem

The number ¢(e) does not depend on the choice of the orthogonal basis e.

Proof. If n =1, we have ¢(e) = 1.
If n =2, then e(e) = 1iff (a1,a:) = 1iff Z% — a1 X? — a,Y? represents 0 iff
a1 X% + a, Y? represents 1 iff there is a v € V, s.t. Q(v) =1.
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But the last condition is independent of the choice of an orthogonal basis,
hence the result.
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But the last condition is independent of the choice of an orthogonal basis,
hence the result.

For n > 3 we will use induction on n and use our lemma in the first part of the
talk. It suffices to prove e(e) = €(e’), when e and €’ are contiguous. By the
symmetry of the Hilbert symbol ¢(e) does not change if we permute e; with
other basis elements. So we can suppose ¢’ = (ef, ..., e7) with e = ef. Write
aj = (e, el), then a] = a;. We get the following equation chain:

e(e) = (ar, a2 an) - [Lhei; (ai, 3j) = (a1, d(Q)a1) - [ [« (ai, aj). Similarly
e(e’) = (a1, d(Q)a1) - [o<;.; (i, a;). Now apply the induction hypothesis to
the orthogonal complement of e; and e} to get

H2§i<j (ai,aj) = H2§i<j (af,ajl-). U

From now on we will write €(Q) instead of €(e).
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Lemma

a) The number of elements in the Fo-vector space kX/kX2 is 2" with r = 2 if
p#2and r=3if p=2.

b) If a€ k*/k** and € = £1, let HS = {x € kX /k*? | (x,a) = ¢}. Ifa=1,

then H. has 2" elements and H; ! = 0. If a # 1, then H§lhas 21 elements.

c) Let a,a’ € kx/k><2 and €,¢ = +1; assume HS and HS are non-empty.
Then HNHS =0 iffa=a and e = —¢'.

Proof .
a) This follows immediate from talk 2, where we proved kX/kX2 ~ (F,)".

b) The case a =1 is trivial. Assume a # 1, then by degeneracy the
homomorphism b — (a, b) carries k* /k** onto {—1,+1} with kernel H} of
dimension r — 1.
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Lemma

a) The number of elements in the Fo-vector space kX/kX2 is 2" with r = 2 if
p # 2 and r_3|fp_2

b) If a € k* /k>< and e = £1, let H; = {x € k* /k>< | (x, a)—e} Ifa=1,
then H. has 2" elements and Hy' = 0. If a1, then HS has 2"~! elements.
c) Let a,a’ € kx/k>< and €, ¢ = +1; assume HS and H, are non-empty.
Then HSNHS =0 iff a=a' and e = —¢'

Proof. c) The if direction (<=) is clear. We will show the only if direction.
The conditions imply with part b) that a # 1 # a’ and both have 27!
elements.

Because of kx/kX2 HS U Hy ¢, we conclude HS N HS = () implies HS = H; ¢
and H§ = Ha_,e/. We get H} = H;, and so (x,a) = (x,a’) for all x € kx/kx2.
Hence (x,aa’) = (x, a)(x,a’) = (x,a)? = 1, by degeneracy we get aa’ =1,
hence a = a’ in k* /k*°. O
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Let f be a quadratic form of rank n with d = d(f) and e = ¢(f).

The quadratic form f represents 0 iff

()n=2and d = —1 (in k*/k*?),

(i) n=3and (—1,—d) =,

(iii) n =4 and either d 21 or d =1 and e = (-1, —1),

(iv) n > 5 (in particular all forms in at least 5 variables represent 0).

Before proving the theorem, let us indicate a consequence of it: let

ac kx/kX2 and f, := f=aZ?. We know that f, represents 0 iff f represents a.
Moreover d(f,) = —ad and €(f;) = (—a, d)e.

By applying the theorem to f, we get the following corollary.
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Corollary

Let a € kx/kxz. Then f represents a iff

(i) n=1and a=d,

(i) n=2and (a,—d) = ¢,

(iii) n = 3 and either a # —d or a= —d and (-1, —d) =,
(iv) n > 4.

Proof. f represents a iff f, represents 0. Now apply the theorem and rewrite
the conditions in terms of d(f) and €(f) instead of d(f;) and €(f,). O
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Let f be a quadratic form of rank n with d = d(f) and e = ¢(f).

The quadratic form f represents 0 iff

()n=2and d = —1 (in k*/k*?),

(i) n=3and (—1,—d) =,

(iii) n =4 and either d 21 or d =1 and e = (-1, —1),

(iv) n > 5 (in particular all forms in at least 5 variables represent 0).

Proof. Write f ~ a1 X? + ... + a,X?. We will prove the theorem by case
distinction regarding the rank n.

(i) Assume n = 2. Then f represents 0 iff —a;/a; is a square in kX/kX2 iff
—a1a = —d is a square iff —d =1 in k* /k*°.

(i) Assume n = 3, then f represents 0 iff —asf ~ —azai X7 — azax X§ — X2
represents 0. By the definition of the Hilbert symbol this is equivalent to
(—asa1, —azaz) = 1. Expanding this leads to
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Let f be a quadratic form of rank n with d = d(f) and e = ¢(f).

The quadratic form f represents 0 iff

()n=2and d = —1 (in k*/k*?),

(i) n=3and (—1,—d) =,

(iii) n =4 and either d 21 or d =1 and e = (-1, —1),

(iv) n > 5 (in particular all forms in at least 5 variables represent 0).

1= (—asza;, —aza) = (—1,-1)(-1, a1)(—1, a2)(as3, a3) (a1, a2) (a1, a3) (a2, a3)
Now use (as, as) = (a3, —azas) = (a3, —1) = (—1, a3) to get
1=(-1,-1)(—1,a1a2a3)(a1, a2)(a1, a3)(a2, a3) = (—1, —d)e, hence
e=(-1,-d).

(iii) Assume n = 4, then f represents 0 iff there exists and element x € kx/kXz
which is represented by the two forms ai X2 + a2 X3 and —asX? — as X7.
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Let f be a quadratic form of rank n with d = d(f) and e = ¢(f).

The quadratic form f represents 0 iff

()n=2and d = —1 (in k*/k*?),

(i) n=3and (—1,—d) =,

(iii) n =4 and either d 21 or d =1 and e = (-1, —1),

(iv) n > 5 (in particular all forms in at least 5 variables represent 0).

By case (ii) of the corollary above, such an x is characterized by the conditions
(x,—a1a2) = (a1, @) and (x, —asas) = (—as, —as).

Write a = —ai1a», b= (a1, ), @ = —asas and b’ = (—a3, —as).

Then a; € H? and —a3 € Hf,/.

Now f does not represent 0 iff HY N H% = () iff a=a’ and b= —b' iff

a1a> = azas and (a1, a2) = —(—as, —as). The first condition is equivalent to
d = 1. Write € out with the definition and use the above relations with the
Hilbert symbol identities to get ¢ = —(—1, —1). Hence the desired.result.
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Let f be a quadratic form of rank n with d = d(f) and e = ¢(f).

The quadratic form f represents 0 iff

()n=2and d = —1 (in k*/k*?),

(i) n=3and (—1,—d) =,

(iii) n =4 and either d 21 or d =1 and e = (-1, —1),

(iv) n > 5 (in particular all forms in at least 5 variables represent 0).

(iv) Assume n > 5. It is sufficient to consider n =5, since a solution for n > 6
is by setting the variables X, ..., X, all to 0 and plug in the solution for n = 5.
By using part (ii) of the above corollary, we see that a form of rank 2
represents at least 2" elements of kx/kx2, and the same is true for forms of
rank > 2 (by setting all other variables to zero). Since 2" > 2, f represents
at least one element a € k* /k*? distinct from d.
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Let f be a quadratic form of rank n with d = d(f) and e = ¢(f).

The quadratic form f represents 0 iff

()n=2and d = —1 (in k*/k*?),

(i) n=3and (—1,—d) =,

(iii) n =4 and either d 21 or d =1 and e = (-1, —1),

(iv) n > 5 (in particular all forms in at least 5 variables represent 0).

We have f ~ aX? + g, where g is a form of rank 4. The discriminant of g is
equal to d/a # 1. By part (iii) g represents 0, the same is then true for f, and
we are done. O
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Artin's conjecture

We saw that all quadratic forms in 5 variables over QQ, represent 0.

Emil Artin conjectured the following:

All homogeneous polynomials of degree d over @, in at least d* + 1 variables
have a non-trivial zero.

We solved the case d = 2.
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Artin's conjecture
[ ]

Artin's conjecture

We saw that all quadratic forms in 5 variables over QQ, represent 0.

Emil Artin conjectured the following:

All homogeneous polynomials of degree d over @, in at least d* + 1 variables
have a non-trivial zero.

We solved the case d = 2.

The case d = 3 was also solved 1955.
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Artin's conjecture
[ ]

Artin's conjecture

We saw that all quadratic forms in 5 variables over QQ, represent 0.

Emil Artin conjectured the following:

All homogeneous polynomials of degree d over @, in at least d* + 1 variables
have a non-trivial zero.

We solved the case d = 2.

The case d = 3 was also solved 1955.

But 1966 G. Terjanian gave a counter-example for d = 4 over Q2 in 18
variables (take a look at ,,J.P. Serre - A course into arithmetic, page 38-39" for
a construction).
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Artin's conjecture
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Artin's conjecture

We saw that all quadratic forms in 5 variables over QQ, represent 0.

Emil Artin conjectured the following:

All homogeneous polynomials of degree d over @, in at least d* + 1 variables
have a non-trivial zero.

We solved the case d = 2.

The case d = 3 was also solved 1955.

But 1966 G. Terjanian gave a counter-example for d = 4 over Q2 in 18
variables (take a look at ,,J.P. Serre - A course into arithmetic, page 38-39" for
a construction).

But one knows that Artin's conjecture is almost true: for a fixed degree d, it
holds for all prime number p except a finite number. However, even for d = 4,
one does not know how to determine the set of exceptional prime numbers.

Kaniuar Bacho Rheinische Friedrich-Wilhelms-Universitat Bonn

Quadratic forms ov



Classification of quadratic forms over Qp
o

Classification of quadratic forms over Q,

Proposition (Classification of quadratic forms over Qp)

Two quadratic forms over k are equivalent iff they have the same rank, same
discriminant and same Hasse invariant.

Proof. The only if direction (=) is clear. We will prove the other direction
via induction on the rank n. The case n = 0 is trivial. The statement that £
represents a € kX/kX2 is only dependent on the discriminant and the Hasse
invariant by our corollary. Hence f and g represent the same elements. Take an
element a which is represented by f and g. This allows us to write
f~aZ?+f and g ~ aZ?+ g', where f’ and g’ are forms of rank n — 1. One
has d(f') =1/a-d(f)=1/a-d(g) = d(g’) and

e(f') = e(f)(a,d(f')) = e(g)(a,d(g’)) = €(g’). So f’ and g’ have the same
invariants and are equivalent by induction hypothesis. Hence f ~ g. O
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Classification of quadratic forms over R

From linear algebra the classification of symmetric bilinear forms over R is
known as Sylvester’'s law of inertia, where a non-degenerate quadratic form f of
rank n can be written as f ~ X2 + ... + X2 — Y2 — ... — Y2 with r +s = n and
r respectively s are uniquely determined.

In fact Sylvester’s law of inertia is more general, than the above version; the
general case is valid for all quadratic forms and not just non-degenerated forms.
With the tools from the last talk the above version should be provable.
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Thank you for your attention! Do you have any questions?
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