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Motivation

Mathematician George Pólya liked to take morning walks through the woods. He noticed
that he would regularly bump into the same couple.
Then he asked himself ”what is the probability that these two randomly walking groups
bump into each other?”
We need a mathematical framework to answer such questions.

[https://en.wikipedia.org/wiki/Random walk]
Brownian motion of a dust particle in the room
can be modeled by a random walk.

[https://de.wikipedia.org/wiki/Random Walk]
Black–Scholes model : stock market prices
evolve according to a random walk.

Kaniuar Bacho (Ruhr University Bochum) Quantum Walks July 4, 2023 4 / 26



Motivation
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Motivation

Shuffling a deck of cards can be modeled by
a random walk.
Fun fact: 7 riffle shuffles are sufficient to
consider the deck as ”good shuffled”.
For overhand shuffle we need 10000.

[https://betandbeat.com/poker/rules/shuffling/]

Google’s search algorithm PageRank:
measure the importance of a webpage using
random surfer model.

[https://www.pulsem.fr/pagerank-toujours-
important-seo/]
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Classical Random Walks

Informally: a random walk is a series of steps through a state space, where the
location of the next step is chosen randomly from among a set of available options.

1 2 3 41
1− p

p
p

1− p

1

We can define random walks on very different state spaces:
d dimensional lattice Zd , graphs, mathematical groups, Riemannian manifolds,...

We can have discrete-time or continuous-time (even more exotic index sets).

We can add many features (e.g. absorbing states, reflecting states,...).
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Classical Random Walks on Zd

1-dimensional simple random walk on Z
Initial position S0 ∈ Z.
After each time step: go to the right with probability p or to the left with 1− p.
Let Sn be the position after n steps.
Model it mathematically by:

Xi
iid∼ Bernoulli(p)

with Pr[Xi = 1] = p and Pr[Xi = −1] = 1− p.
Hence our position after n steps is

Sn = Sn−1 + Xn

= S0 + X1 + X2 + ...+ Xn.

Example:
How does Sn evolve over time for S0 = 0 and p = 1/2?
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Classical Random Walks on Zd

[YouTube - PBS Infinite Series - What is a Random Walk?]

S1 after one time step

S2 after two time steps

S3 after three time steps S100 after 100 time steps
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Classical Random Walks on graphs

Now: random walks on finite, d-regular, connected graphs G = (V ,E) without
selfloops.

State space is V . Let N := |V |.
Probability going from vertex x to y is given by

Pr[x , y ] =

{
1/d , if {x , y} ∈ E

0, else

Encode this information into the N × N transition matrix P with P[x , y ] = Pr[x , y ].

Initial distribution: unlike before, starting point X0 is not determined.
It is chosen from a probability distribution X0 ∼ p0, i.e. p0 is a probability vector
over the vertices V .

We are interest in how Xn evolves over time. Let’s compute X1:

Pr[X1 = y ] =
∑
x

Pr[X0 = x ] · Pr[x , y ] = (p0 · P)[y ].

Hence
X1 ∼ p0 · P =⇒ Xn ∼ p0 · Pn.
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Stationary distribution

We showed pn = p0 · Pn. How does it behave in the long term?

A probability vector π is called stationary distribution if π = π · P.

In our case above π = (
1

N
,
1

N
, ...,

1

N
) is a stationary distribution:

(π · P)[y ] =
∑
x

π[x ] · Pr[x , y ] =
∑
x

1

N
· Pr[x , y ] =

∑
x∼y

1

N
· Pr[x , y ] = 1

N
.

Uniqueness and Convergence

i) Stationary distribution π is unique (here it is used that G is connected).

ii) If G is additionally non-bipartite, then pn
n→∞−−−→ π ∀p0.
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Mixing time and hitting time

The ϵ−mixing time measures how fast we approach the stationary distribution with
an error of at most ϵ:

MT(ϵ) := min{n : sup
p0

∥p0 · Pn − π∥ ≤ ϵ}.

Since P is symmetric and real, we have N real eigenvalues λ1 ≥ λ2 ≥ ... ≥ λN .
Using the Perron–Frobenius theorem we get 1 = λ1 > λ2 ≥ ... ≥ λN > −1.

Define the spectral gap δ := 1−maxi≥2 |λi | > 0.

Convergence rate

MT(ϵ) ≤ 1

δ
· (1

2
log(N) + log

(
1

ϵ

)
)
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Mixing time and hitting time

Let M ⊆ V be a subset of the vertices, which are called marked.
Assume we start with the stationary distribution and want to hit an element in M.
The hitting time asks for how fast we can find such a marked element

τM := min
t≥0
{t | Xt ∈ M ∧ X0 ∼ π},

HTM := E[τM ].

Complexity bound

HTM ∈ O

(
1

δ
· N

|M|

)

This random walk search algorithm can find marked elements in O

(
1

δ
· N

|M|

)
.

Start at vertex x , then repeat until find marked vertex: check if current vertex is
marked if not, run a random walk for roughly 1/δ steps to get close to the uniform
distribution.
Can we improve this by switching to a quantum setting?
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Quantum Walks: quantizing random walks (part 1)

How to convert random walk into a quantum walk?

Naive approach would be a unitary U of the form |x⟩ 7→ 1√
d

∑
y∼x |y⟩.

But this cannot exist in general: consider a graph with two different vertices x and
z , which have the same neighbours. So U |x⟩ = U |z⟩, hence |x⟩ = |z⟩ .  

Classical random walk on Z: coin flip followed by a shift.
Solution: combine them into one object. Add coin space to the state space and
define two unitaries.
Think of it as: position of the walker & direction that the walker points to.
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Quantum Walks: quantizing random walks (part 2)

On graphs: write |x , y⟩ = |x⟩ |y⟩ for being at vertex x pointing to y .
This can be considered to quantum walk over the edges (x , y)!

Shift: if the walker moves to y , what should be the new direction? As we came from
x , it should be x . This is implemented by the SWAP-operation S |x , y⟩ = |y , x⟩.

Coin toss: set |ψx⟩ =
1√
d

∑
y∼x |x , y⟩. Define the coin toss by

C = 2

(∑
x∈V

|ψx⟩ ⟨ψx |

)
− I ,

which is a reflection around |ψx⟩.

Let the quantum walk operator be W = S · C .
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Quantum walk on Z

Let HP be the Hilbert space spanned by the positions of the walker. On the line it is
spanned by {|i⟩ : i ∈ Z}.
Add the coin space HC to it, spanned by {|0⟩ , |1⟩} = {|→⟩ , |←⟩}.
States of the total system are in the space H = HC ⊗HP .

The conditional translation is described by

S = |→⟩ ⟨→| ⊗
∑
i

|i + 1⟩ ⟨i |

+ |←⟩ ⟨←| ⊗
∑
i

|i − 1⟩ ⟨i |

So |→⟩ ⊗ |i⟩ is transformed to |→⟩ ⊗ |i + 1⟩ and |←⟩ ⊗ |i⟩ to |←⟩ ⊗ |i − 1⟩.

As a coin flip, we will take the Hadamard coin H =
1√
2

(
1 1
1 −1

)
.

Start with state |Ψ0⟩ = |→⟩⊗ |0⟩, apply H ⊗ I to get
1√
2
|→⟩⊗ |0⟩+ 1√

2
|←⟩⊗ |0⟩.

Apply S to get |Ψ1⟩ =
1√
2
|→⟩ ⊗ |1⟩+ 1√

2
|←⟩ ⊗ |−1⟩.
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S = |→⟩ ⟨→| ⊗
∑
i

|i + 1⟩ ⟨i |

+ |←⟩ ⟨←| ⊗
∑
i

|i − 1⟩ ⟨i |

So |→⟩ ⊗ |i⟩ is transformed to |→⟩ ⊗ |i + 1⟩ and |←⟩ ⊗ |i⟩ to |←⟩ ⊗ |i − 1⟩.

As a coin flip, we will take the Hadamard coin H =
1√
2

(
1 1
1 −1

)
.

Start with state |Ψ0⟩ = |→⟩⊗ |0⟩, apply H ⊗ I to get
1√
2
|→⟩⊗ |0⟩+ 1√

2
|←⟩⊗ |0⟩.

Apply S to get |Ψ1⟩ =
1√
2
|→⟩ ⊗ |1⟩+ 1√

2
|←⟩ ⊗ |−1⟩.
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Quantum walk on Z

Measure to get {|→⟩ ⊗ |1⟩ , |←⟩ ⊗ |−1⟩} each with probability 1/2.
If we continue and measure after each iteration, we obtain the plain classical
random walk on Z.

What does happen if we do not measure in-between?
It will behave completely different!

Let U = S · (H ⊗ I ), then we get

|Ψ3⟩ = U3 |Ψ0⟩

=
1

2
√
2
(|→⟩ ⊗ |3⟩+ |←⟩ ⊗ |1⟩+ 2 |→⟩ ⊗ |1⟩ − |→⟩ ⊗ |−1⟩+ |←⟩ ⊗ |−3⟩) .

So |3⟩ , |−3⟩ , |−1⟩ appear with probability 1/8, but |1⟩ with 5/8.
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Quantum walk on Z

Classical random walk vs. quantum walk after 50 steps:

[https://en.wikipedia.org/wiki/Quantum walk]

Reason for drifting to the right: the Hadamard coin treats |→⟩ and |←⟩ differently.
|←⟩ will appear more often with negative and positive coefficients, which will cancel out.
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Quantum walk searching algorithm

Remember |ψx⟩ =
1√
d

∑
y∼x |x , y⟩, C = 2

(∑
x∈V |ψx⟩ ⟨ψx |

)
− I and W = S · C .

Our quantum walk algorithm will work similar to Grover’s algorithm. Define two
states

|G⟩ := 1√
|M|

∑
x∈M

|ψx⟩ , |B⟩ :=
1√

N − |M|

∑
x /∈M

|ψx⟩ .

And

|π⟩ := |U⟩ = 1√
N

∑
x

|ψx⟩ .

Now we only have to implement the reflection through |B⟩ and through |U⟩, like in
Grover.
The first one is easy: just check if the first register has a marked element. If yes, put
a −1.
The second one is harder. Here we will use the quantum walk W .

We have that |π⟩ = 1√
Nd

∑
(x,y)∈E |x , y⟩ is a stationary state of W .
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Quantum walk searching algorithm

Szegedy’s spectral lemma (2004)

The non-trivial spectrum of the quantum walk operator W can be characterized as
follows: for every eigenvalue λj = cos θj ̸= 1 of P, the quantum walk operator W
has a pair of eigenvalues e±iθj with θj ∈ (0, π).

We have a correspondence between the
eigenvalues of P and of W by projecting
them to the circle.
The phase gap is defined by
∆ := min{θj | θj ̸= 0}.
By the lemma we have θj = arccos(λj).
Hence ∆ = arccos(λ2).

Now use
x2

2
≥ 1− cos(x) ∀x ∈ R to get x ≥

√
2 · (1− cos(x)). Plug in ∆ to get

∆ ≥
√

2 · (1− λ2) =
√
2δ.
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Quantum walk searching algorithm

For the analysis(!) use spectral decomposition for any state |Ψ⟩ = α0 |π⟩+
∑
αj |vj⟩

with W |vj⟩ = e iθj |vj⟩ and θj ≥ ∆ > 0.

Use quantum phase estimation QPE to distinguish between these two summands.
The first one has eigenvalue with angle 0, the other one with θj ≥ ∆ > 0.

Use QPE with ∆ precision. Store the angle in a new register. Now a apply the
unitary 2 · I ⊗ |0⟩ ⟨0| − I to add sign -1 if angle is not 0.

Uncompute the QPE again by applying the inverse (make sure we have no
entanglements). We arrive at |Ψ′⟩ = α0 |π⟩ −

∑
αj |vj⟩.

We implemented 2 · |π⟩ ⟨π| − I successfully. This is our reflection around |π⟩.

All in all our quantum walk searching algorithm needs

O

(
1

∆
·

√
N

|M|

)
= O

(√
1

δ
· N

|M|

)
.
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Convert problem into graph

High level idea how to solve problems using quantum walks:
1) Convert problem P into a graph G with marked elements M, s.t.
”Finding marked element in G” ⇔ ”Finding solution of P”.
2) Now quantum walk on G until we hit M.

Solve unstructured search problem using quantum walks (instead of Grover).
Given an N-bit string with exactly T 1’s. We want to find a 1.
Convert to N-complete graph with N vertices. It should be complete because we
have the freedom to query any index in the list, meaning we can jump to any other
position/vertex.
Now the marked elements corresponds to the 1’s, meaning |M| = T . Moreover one

can show δ = 1− 1

N − 1
≈ 1. Hence the complexity to find a marked element is

O

(√
N

|M|

)
= O

(√
N

T

)
.
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End

Thank you for your attention :-)
Questions?
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